Skip to main content

Multiphoton Phenomena in Photoelectron Emission Processes of Metals at High Laser Intensities

  • Conference paper
Laserspektroskopie

Part of the book series: Acta Physica Austriaca ((FEWBODY,volume 20/1979))

  • 49 Accesses

Abstract

Before the advent of lasers, photoeffect was known in the form of the linear photoeffect characterised by Einstein’s equation

$$h=A+\frac{1}{2}m{{v}^{2}}$$

and by the linear relation j ∝ I between the photocurrent j and the light intensity I. When, however, the work function A of a metal characterized by the Fermi energy of the Sommerfeld-type conduction electron gas is higher than the photon energy bv of the irradiating laser light, multiphoton surface photoeffect may occur. The detailed description of the problems related to the multiphoton photoeffect is published in form of the review papers [1,2,3].

Vortrag gehalten anläßlich der Fachtagung „Laserspektroskopie“, Graz, 19.–21. Juni 1978.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gy.Farkas in: Multiphoton Processes, John Wiley and Sons, New York 1978.

    Google Scholar 

  2. S.I. Anisimov, V.A. Benderskii,Gy.Farkas, Usp.Fiz. Nauk 122 (1977) 185.

    Article  Google Scholar 

  3. P.P. Barashev, Phys. Stat. Sol. a9 (1972) 9.

    Article  ADS  Google Scholar 

  4. R.E.B. Makinson, M.J. Buckingham, Proc. Roy. Phys. Soc. 64A (1951) 135.

    ADS  Google Scholar 

  5. R.L. Smith, Phys. Rev. 128 (1962) 2225.

    Google Scholar 

  6. I. Adawi, Phys. Rev. 134A (1964) 788.

    Article  ADS  Google Scholar 

  7. M.E. Marinchuk, Phys. Rev. Lett. 34A (1971) 97.

    Google Scholar 

  8. P.P. Barashev, Fiz. Tverd. Tela 12 (1970) 1973.

    Google Scholar 

  9. M.C. Teich, G.J. Wolga, Phys. Rev. 171 (1968) 809.

    Article  ADS  Google Scholar 

  10. L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47 (1964) 1945.

    Google Scholar 

  11. F.V. Bunkin, M.V. Fedorov, Zh. Eksp. Teor. Fiz. 48 (1965) 1341.

    Google Scholar 

  12. A.P. Silin, Fiz. Tverd. Tela 12 (1970) 3553.

    Google Scholar 

  13. A.M. Brodskii, Yu.Ya. Gurevich, Teorija Elektronnoi.

    Google Scholar 

  14. A.M. Brodskii, Phys. Stat. Sol. (b)83 (1977) 331.

    Article  ADS  Google Scholar 

  15. S.I. Anisimov, Ya.A. Imas, G.S. Romanov, Yu.V.Khodyko, Deistvie Izlushenia Bolshoi Moshnosti na Metally, Nauka, Moscow, 1970.

    Google Scholar 

  16. F.V. Bunkin, A.M. Prokhorov, Zh, Eksp. Teor. Fiz. 52 (1967) 1610.

    Google Scholar 

  17. S.I. Anisimov, N.A. Inogamov, Yu.P. Petrov, Phys. Lett. 45A (1976) 449.

    Google Scholar 

  18. I. Kantorovich, Pismo Zh. Techn. Fiz. 3, 230; 3 (1977) 280.

    Google Scholar 

  19. F. Ehlotzky, many papers, see in 21.

    Google Scholar 

  20. H. Mitter, in Multiphoton Processes, John Wiley and Sons, New York 1978.

    Google Scholar 

  21. J.H. Eberly, Progress in Optics VII (1969) 361 North Holland.

    Google Scholar 

  22. J.H. Eberly, Proc. International Conf. on Optical Pumping and Atomic Line Shape, Warsaw, 1968 p. 311.

    Google Scholar 

  23. D.M. Volkov, Z. für Physik 94 (1935) 250.

    Article  ADS  MATH  Google Scholar 

  24. E.M. Logothetis, P.L. Hartman, Phys. Rev. 187 (1969) 460.

    Article  ADS  Google Scholar 

  25. Gy.Farkas, I. Kertész, Zs. Naray, P. Varga, Phys. Lett. 25A (1967) 572.

    Google Scholar 

  26. Gy.Farkas, Z. Horvath, I. Kertész, G. Kiss, Nuovo Cim. Lett. 1 (1971) 314.

    Article  Google Scholar 

  27. Gy.Farkas, Z. Gy.Horvath, I. Kertész, Phys. Lett. 39A (1972) 231.

    Article  Google Scholar 

  28. Gy.Farkas, Z.Gy.Horvath, Opt. Comm. 12 (1974) 392.

    Article  ADS  Google Scholar 

  29. Gy.Farkas, Z.Gy.Horvath, L.A. Lompré, G. Petite, Phys. Stat. Sol. (a)39 (1977) K25.

    Article  ADS  Google Scholar 

  30. J.H. Bechtel, W.L. Smith, N. Bloembergen, Opt. Comm. 12 (1975) 392.

    Google Scholar 

  31. J.H. Bechtel, W.L. Smith, N. Bloembergen, Phys. Rev. 315 (1977) 4557.

    Google Scholar 

  32. L.A. Lompré, J.Thébault, Gy.Farkas, Appl. Phys. Lett. 27 (1975) 110.

    Google Scholar 

  33. L.A. Lompré, J.Thébault, Gy.Farkas, Appl. Phys. Lett. 27 (1975) 110.

    Google Scholar 

  34. L.A. Lompré, G.Mainfray, J.Thébault, J. Appl. Phys. 48 (1977) 1570.

    Article  ADS  Google Scholar 

  35. L.A. Lompré, G.Mainfray, J.Thébault, Saclay Preprint to be published.

    Google Scholar 

  36. E.A. Martin, L.Mandel, Appl. Opt. 15 (1976) 2378.

    Article  Google Scholar 

  37. Gy.Farkas,L.A.Lompré, G.Mainfray, C.Manus, J.Thébault, to be published.

    Google Scholar 

  38. P.A. Redhead et al., The Physical Basis of Ultrahigh Vacuum 1968. Chapman and Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Farkas, G. (1979). Multiphoton Phenomena in Photoelectron Emission Processes of Metals at High Laser Intensities. In: Aussenegg, F. (eds) Laserspektroskopie. Acta Physica Austriaca, vol 20/1979. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7609-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7609-2_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7610-8

  • Online ISBN: 978-3-7091-7609-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics