Skip to main content

Parametric Offset Surface Approximation

  • Conference paper
Geometric Modelling

Part of the book series: Computing Supplement ((COMPUTING,volume 10))

  • 126 Accesses

Abstract

Offset surfaces are of interest in a variety of engineering applications. The formulation of a parametric offset surface involves division by the square root of a parametric equation, therefore, the offset surface is typically non-polynomial. Because of this complexity, offset surfaces cannot, in general, be written as members of the same class of functions or their generating or progenitor surface. Approximation of the offset surface is therefore desirable. Three contemporary methods of offset surface approximation are described which serve as models for the development of a new approximation algorithm. An adaptive offset surface approximation method based on a visually smooth triangular interpolant to position and tangent plane data defined in a triangular mesh is then developed. The criteria used to develop the approximation method are discussed, the components of the algorithm are described and the results of an implementation are illustrated. A conclusion about the success and possible refinement of the triangular offset surface approximation method is drawn and ideas for further research are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfeld, P.: A trivariate Clough-Toucher scheme for tetrahedral data. Comput. Aided Geom. Des. 1, 169–181 (1984).

    Google Scholar 

  2. Atkinson, K. E.: An introduction to numerical analysis. New York: J. Wiley 1978.

    MATH  Google Scholar 

  3. Barnhill, R. E.: Representation and approximation of surfaces. In: Mathematical software III. (Rice, J. R, ed.), pp. 69–129. San Diego: Academic Press 1977.

    Google Scholar 

  4. Barnhill, R. E., Farin, G., Hansford, D.: A subdivision process for triangular mesh refinement. Technical Report TR 93/005, Computer Science Department, Arizona State University 1993.

    Google Scholar 

  5. Boehm, W., Gose, G., Kahmann, J.: it Methoden der Numerischen Mathematik. Braunschweig: Vieweg 1985.

    Google Scholar 

  6. Farin, G. E.: Smooth interpolation to scattered 3D data. In: Surfaces in CAGD (Barnhill, R. E., Boehm, W., eds.), pp. 43–63. Amsterdam: North-Holland 1983.

    Google Scholar 

  7. Farin, G. E.: Triangular Bernstein-Bézier patches. Comput. Aided Geom. Des. 3, 83–127 (1986).

    Article  MathSciNet  Google Scholar 

  8. Farin, G. E.: Curves and surfaces for computer aided geometric design, 2nd edn. San Diego: Academic Press 1990.

    MATH  Google Scholar 

  9. Farouki, R. T.: The approximation of non-degenerate offset surfaces. Comput. Aided Geom. Des. 3, 15–43 (1986).

    Article  MATH  Google Scholar 

  10. Frey, W. H.: Selective refinement: a new strategy for automatic node placement in graded triangular meshes. General Motors Research Publication GMR-5432, Mathematics Department, 1986.

    Google Scholar 

  11. Frost, T. M.: Parametric offset surfaces. M.S. Thesis, Department of Computer Science and Engineering, Arizona State University, Tempe, 1991.

    Google Scholar 

  12. Gregory, J. A.: Geometric continuity. In: Mathematical methods in computer aided geometric design (Lyche, T., Schumaker, L., eds.), pp. 353–372. New York: Academic Press 1989.

    Google Scholar 

  13. Hoschek, J.: Offset curves in the plane. Comput. Aided Des. 17, 77–82 (1985).

    Article  Google Scholar 

  14. Hoschek, J.: Intrinsic parametrization for approximation. Comput. Aided Geom. Des. 5, 27–31 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoschek, J., Wissel, N.: Optimal approximate conversion of spline curves and spline approximation of offset curves. Comput. Aided Des. 20, 475–483 (1988).

    Article  Google Scholar 

  16. Hoschek, J., Schneider, F. J., Wassum, P.: Optimal approximate conversion of spline surfaces. Comput. Aided Geom. Des. 6, 293–306 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  17. Klass, R.: An offset spline approximation for plane cubic splines. Comput. Aided Des. 15, 297–299 (1983).

    Article  Google Scholar 

  18. Lyche, T., Cohen, E., Morken E.: Knot refinement algorithms for tensor product B-spline surfaces. Comput. Aided Geom. Des. 2, 133–139 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  19. Patrikalakis, N. M., Prakash, P. V.: Free-form plate modeling using offset surfaces. In: Computers in offshore and arctic engineering–1987 (Chung, J. S., Angelides, D., eds.), pp. 37-44.

    Google Scholar 

  20. Pham, B.: Offset approximation of uniform B-splines. Comput. Aided Des. 20, 471–474 (1988).

    Article  MATH  Google Scholar 

  21. Piper, B. R.: Visually smooth interpolation with triangular Bézier patches. In: Geometric modeling: algorithms and new trends (Farin, G., éd.), pp. 221–233. Philadelphia: SIAM 1987.

    Google Scholar 

  22. Rosenberg, I. G., Stenger, F.: A lower bound on the angles of triangles constructed by bisecting the longest side. Comput. 29, 390–395 (1975).

    MathSciNet  MATH  Google Scholar 

  23. Scarlatos, L., Pavlidis, T.: Hierarchical triangulation using terrain features. In: Visualization’ 90. (Kaufman, A., ed.), pp. 168–185. IEEE Computer Society, Los Alamitos, 1990.

    Google Scholar 

  24. Schumaker, L. L., Volk, W.: Efficient evaluation of multivariate polynomials. Comput. Aided Geom. Des. 3, 149–154 (1986).

    Article  MATH  Google Scholar 

  25. Stynes, M.: On faster convergence of the bisection method for all triangles. Math. Comput. 35, 1195–1201 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  26. Tiller, W., Hanson, E. G.: Offsets of two-dimensional profiles. IEEE Comput. Graphics Appl. 4, 36–46 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag/Wien

About this paper

Cite this paper

Barnhill, R.E., Frost, T.M. (1995). Parametric Offset Surface Approximation. In: Hagen, H., Farin, G., Noltemeier, H. (eds) Geometric Modelling. Computing Supplement, vol 10. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7584-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7584-2_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82666-9

  • Online ISBN: 978-3-7091-7584-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics