Advertisement

Study of the Bound States of Few-Nucleon Systems with Correlated Basis Functions

  • S. Rosati
  • B. Kievsky
  • A. Viviani
Part of the Few-Body Systems book series (FEWBODY, volume 6)

Abstract

The ground-state wave functions of the three- and four-body nucleon systems have been calculated by means of an expansion on a set of “correlated states”given by the product of a correlation factor with the functions of a complete basis. The correlation factor has been chosen as the product of unidimensional functions determined by an Euler variational procedure. Two different complete basis have been used, the Harmonic Oscillator (HO) and the Hyperspherical Harmonic (HH) basis. For three nucleons interacting via a realistic potential, both methods give results of a satisfactory accuracy when compared with others techniques. However, for four nucleons (interacting via a central potential) only the correlated HH expansion makes it possible to obtain accurate wave functions.

Keywords

Wave Function Average Kinetic Energy Hyperspherical Harmonic Variational Wave Function Mass Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    G. L. Payne, J. L. Friar, B. F. Gibson and I. R. Afnan, Phys. Rev. C22 (1980) 823;ADSGoogle Scholar
  2. 2).
    C. Hajduk and P. U. Sauer, Nucl. Phys. A369 (1981) 321;CrossRefGoogle Scholar
  3. 3).
    S. Ishikawa, T. Sasakawa, T. Sawada and T. Ueda, Phys. Rev. Lett. 53 (1984) 1877;ADSCrossRefGoogle Scholar
  4. T. Sasakawa and S. Ishikawa, Few-Body Systems 1 (1986) 3;ADSCrossRefGoogle Scholar
  5. 4).
    C. R. Chen, G. L. Payne, J. L. Friar and B. F. Gibson, Phys. Rev. C31 (1985) 266;CrossRefGoogle Scholar
  6. C. R. Chen, G. L. Payne, J. L. Friar and B. F. Gibson, Phys. Rev. C33 (1986) 1740;ADSGoogle Scholar
  7. 5).
    J. Carlson, Phys. Rev. C38 (1987) 2026;ADSGoogle Scholar
  8. J. Carlson, Phys. Rev. C38 (1988) 1879;ADSGoogle Scholar
  9. 6).
    A. D. Jackson, A. Lande and P. U. Sauer, Phys. Lett. 35B (1971) 365;CrossRefGoogle Scholar
  10. S. N. Yang and A. D. Jackson, ibid. 36B (1971) 1;ADSGoogle Scholar
  11. 7).
    Y. Akaishi, M. Sakai, J. Hiura and H. Tanaka, Prog. Theor. Phys. Suppl. 56 (1974) 6;ADSCrossRefGoogle Scholar
  12. 8).
    M. A. Hennel and L. M. Delves, Nucl. Phys. A248 (1975) 490 and references therein;Google Scholar
  13. 9).
    P. Nunberg, D. Prosperi and E. Pace, Nucl. Phys. A285 (1977) 58;CrossRefGoogle Scholar
  14. 10).
    J. Carlson, V. R. Pandharipande and R. B. Wiringa, Nucl. Phys. A401 (1983) 59;CrossRefGoogle Scholar
  15. R. Schiavilla, V. R. Pandharipande and R. B. Wiringa, ibid. A449 (1986) 219;Google Scholar
  16. 11).
    J. L. Ballot and M. Fabre de la Ripelle, Ann. Phys. 127 (1980) 62;ADSCrossRefGoogle Scholar
  17. 12).
    M. Kamimura, Phys. Rev. A38 (1988) 629;Google Scholar
  18. 13).
    H. Kameyana, M. Kamimura and Y. Fukushima, Phys. Rev. C40 (1989) 974;ADSGoogle Scholar
  19. 14).
    A. Kievsky, S. Rosati and M. Viviani, Nucl. Phys. A501 (1989) 503;CrossRefGoogle Scholar
  20. 15).
    A. Kievsky, S. Rosati and M. Viviani, Few Body Syst. 9 (1990) 1;ADSCrossRefGoogle Scholar
  21. A. Kievsky, S. Rosati and M. Viviani, submitted to Phys.Rev.C, preprint 1991;Google Scholar
  22. 16).
    A. Kievsky, S. Rosati and M. Viviani, Few Body Systems, in press;Google Scholar
  23. 17).
    R. V. Reid, Ann. Phys. (N.Y.) 50 (1968) 411;ADSCrossRefGoogle Scholar
  24. 18).
    R. B. Wiringa, R. A. Smith and T.L. Ainsworth, Phys. Rev. C29 (1984) 1207;ADSGoogle Scholar
  25. 19).
    S. Fantoni, L. Panattoni and S. Rosati, Il Nuovo Cim. 89A (1970) 88;Google Scholar
  26. 20).
    R. A. Malfliet and J. A. Tjon, Nucl. Phys. A217 (1969) 161;Google Scholar
  27. 21).
    J. L. Ballot and J. Navarro; J. Phys. B8 (1975) 172;Google Scholar
  28. C. D. Lin, Phys. Rev. bf Al2 (1975) 493;Google Scholar
  29. 22).
    Y. A. Simonov, Sov. J. Nucl. Phys. 3, (1966) 461;MathSciNetGoogle Scholar
  30. A. M. Badalyan and Y. A. Simonov, Soy. J. Nucl. Phys. 3 (1966) 755;Google Scholar
  31. 23).
    G. Erens, J. L. Visschers, and R. van Wageningen, Ann. of Phys. 67, (1971) 461;ADSCrossRefGoogle Scholar
  32. M. Beiner and M. Fabre de la Ripelle, Nuovo Cim. Lett. 1 (1971) 584;Google Scholar
  33. V. F. Demin and Y. E. Pokrovsky, Phys. Lett. B47, (1973) 394;Google Scholar
  34. Y. A. Simonov, in “The Nuclear Many—Body Problem” (F. Calogero and C. Ciofidegli-Atti Eds. ), Bologna 1973;Google Scholar
  35. 24).
    J. L. Ballot, Few Body Syst. Suppl. 1 ed. C. Ciofidegli Atti, O. Benhar, E. Pace and G. Salmè ( Springer Verlag, Wien 1987 ), p. 140;Google Scholar
  36. 25).
    M. Kamimura and H. Kameyama, Nucl. Phys. A508 (1990) 17c;ADSCrossRefGoogle Scholar
  37. 26).
    Y. Akaishi, Few Body Syst. Suppl. 1 ed. C. Ciofi degli Atti, O. Benhar, E. Pace and G. Salmè ( Springer Verlag, Wien 1987 ), p. 120;Google Scholar
  38. 27).
    J. G. Zabolitzky, K. E. Schmidt and M. H. Kalos, Phys. Rev. C25 (1982) 1111.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • S. Rosati
    • 1
    • 2
  • B. Kievsky
    • 2
  • A. Viviani
    • 2
  1. 1.Dipartimento di FisicaUniversitá di PisaPisaItaly
  2. 2.Sezione di PisaINFNPisaItaly

Personalised recommendations