Advertisement

New Applications of the Faddeev Approach to the Three-Body Coulomb Problem

  • A. A. Kvitsinsky
  • C.-Y. Hu
  • J. Carbonell
  • C. Gignoux
  • S. P. Merkuriev
Part of the Few-Body Systems book series (FEWBODY, volume 6)

Abstract

We present a calculation of the e − (e e +) scattering length in the framework of the bipolar expansion applied to the modified Faddeev equations (FE). Also, a new method of direct solving the three-dimensional FE for the three-body Coulomb bound state problem is described.

Keywords

Configuration Space Faddeev Equation Kinetic Energy Operator Partial Channel Faddeev Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbonell, J., Gignoux, C., Kvitsinsky, A.A.: in preparationGoogle Scholar
  2. 2.
    Hu, C.-Y., Kvitsinsky, A.A., Merkuriev, S.P.: submitted to Phys. Rev. A.Google Scholar
  3. 3.
    Merkuriev, S.P.: Ann. Phys. 130, 395 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Kostrykin, V.V., Kvitsinsky, A.A., Merkuriev, S.P.: Few-Body Systems 8, 97 (1989).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Carbonell, J., Gignoux, C., Merkuriev, S.P.: contribution to this Conference.Google Scholar
  6. 6.
    Ward, S.J., Humberstone, J.W., McDowell, M.R.C.: J. Phys. B20, 127 (1987).ADSGoogle Scholar
  7. 7.
    Schellingerhout, N.W., Kok, L.P., Bosveld, G.D.: Phys. Rev. A 40, 5568 (1989).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Prenter, P.M.: Splines and Variational Methods. New York: Wiley 1975.MATHGoogle Scholar
  9. 9.
    Payne, G.L.: in: Lecture Notes in Physics, vol. 273. Berlin: Springer 1987. PP.64–99.Google Scholar
  10. 10.
    Bhatia, A.K., Drachman, R.J.: Phys. Rev. A 28, 2523 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. A. Kvitsinsky
    • 1
    • 2
  • C.-Y. Hu
    • 3
  • J. Carbonell
    • 2
  • C. Gignoux
    • 2
  • S. P. Merkuriev
    • 1
  1. 1.Department of Mathematical and Computational Physics, Institute for PhysicsLeningrad UniversityLeningradUSSR
  2. 2.Institut des Sciences NucléairesGrenoble CedexFrance
  3. 3.Physics DepartmentCalifornia State UniversityLong BeachUSA

Personalised recommendations