New Approaches for Bound and Scattering States

  • J. L. Friar
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 6)


Since its inception, the field of few-nucleon physics has been driven by the desire to obtain accurate solutions of the Schrödinger equation for physically interesting problems. These problems include the bound and scattering states of Hamiltonians which contain “realistic” potentials. This quest has been considered so important and so difficult that a major component of our field has devoted itself as much to methods of solution as to the physics inherent in the problems. Lack of convergence of different methods in the past had many different causes, but the result was an inability to extract that physics.


Schrodinger Equation Realistic Potential Pauli Principle Faddeev Equation Tensor Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 31, 2266 (1985);ADSCrossRefGoogle Scholar
  2. C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, 33, 1740 (1986);Google Scholar
  3. J. L. Friar, B. F. Gibson, and G. L. Payne, ibid, 35, 1502 (1987).Google Scholar
  4. 2.
    J. Carlson, Phys. Rev. C 36, 2026 (1987).ADSCrossRefGoogle Scholar
  5. 3.
    J. Carlson, private communication.Google Scholar
  6. 4.
    W. Glöckle, H. Witala, and Th. Cornelius, Nucl. Phys. A508, 115c (1990).ADSCrossRefGoogle Scholar
  7. 5.
    C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 44, 50 (1991).ADSCrossRefGoogle Scholar
  8. 6.
    J. L. Friar, B. F. Gibson, and G. L. Payne, Phys. Rev. C 30, 1084 (1984).ADSCrossRefGoogle Scholar
  9. 7.
    R. B. Wiringa, Phys. Rev. C 43, 1585 (1991).ADSCrossRefGoogle Scholar
  10. 8.
    J. J. de Swart, contribution to this conference.Google Scholar
  11. 9.
    L. H. Thomas, Phys. Rev. 47, 903 (1935).ADSMATHCrossRefGoogle Scholar
  12. 10.
    E. Gerjuoy and J. Schwinger, Phys. Rev. 61, 138 (1942).ADSCrossRefGoogle Scholar
  13. 11.
    L. M. Delves and A. C. Phillips, Rev. Mod. Phys. 41, 497 (1969);ADSCrossRefGoogle Scholar
  14. L. M. Delves and A. C. Phillips, Adv. in Nucl. Phys. 41, 497 (1969);MathSciNetADSGoogle Scholar
  15. 12.
    R. Jastrow, Phys. Rev. 98, 1479 (1955).ADSMATHCrossRefGoogle Scholar
  16. 13.
    S. C. Pieper, R. B. Wiringa, and V. R. Pandharipande, Phys. Rev. Lett. 64, 364 (1990).ADSCrossRefGoogle Scholar
  17. 14.
    R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C 38, 1010 (1988).ADSCrossRefGoogle Scholar
  18. 15.
    H. Kameyama, M. Kamimura, and Y. Fukushima, Phys. Rev. C 40, 1 (1989).ADSCrossRefGoogle Scholar
  19. 16.
    L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960)MathSciNetGoogle Scholar
  20. L. D. Faddeev, Soy. Phys. - JETP 12, 1014 (1961)MathSciNetGoogle Scholar
  21. 17.
    H. P. Noyes, in Three Body Problem in Nuclear and Particle Physics, J. S. C. McKee and P. M. Rolph, eds. ( North-Holland, Amsterdam, 1970 ), p. 2.Google Scholar
  22. 18.
    J. L. Friar, in Modern Topics in Electron Scattering, B. Frois and I. Sick, eds. ( World Scientific, Singapore, 1991 ).Google Scholar
  23. 19.
    L. L. Foldy and W. Tobocman, Phys. Rev. 105, 1099 (1957).ADSMATHCrossRefGoogle Scholar
  24. 20.
    W. Glöckle, Nucl. Phys. A141, 620 (1970).CrossRefGoogle Scholar
  25. 21.
    R. A. Malfliet and J. A. Tjon, Ann. Phys. (N.Y.) 61, 425 (1970).ADSCrossRefGoogle Scholar
  26. 22.
    R. A. Brandenburg, Y. E. Kim, and A. Tubis, Phys. Lett. 49B, 205 (1974).CrossRefGoogle Scholar
  27. 23.
    C. Hajduk and P. U. Sauer, Nucl. Phys. A369, 321 (1981).CrossRefGoogle Scholar
  28. 24.
    M. H. Kalos, Phys. Rev. 128, 1791 (1962); Nucl. Phys. Al26, 609 (1969);Google Scholar
  29. Y. C. Tang and R. C. Herndon, Nucl. Phys. A93, 692 (1967) quote the statistical error of the former result.Google Scholar
  30. 25.
    G. A. Baker, Jr., J. L. Gammel, B. J. Hill, and J. G. Wills, Phys. Rev. 125, 1754 (1962).MathSciNetADSCrossRefGoogle Scholar
  31. 26.
    R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Phys. Rev. C 29, 1207 (1984).Google Scholar
  32. 27.
    J. Carlson, J. L. Friar, and G. L. Payne, Phys. Rev. C 37, 420 (1988).ADSCrossRefGoogle Scholar
  33. 28.
    Yu. A. Simonov, Yad. Fiz. 3, 630 (1966)MathSciNetGoogle Scholar
  34. Yu. A. Simonov, Soy. J. Nucl. Phys. 3, 461 (1966).MathSciNetGoogle Scholar
  35. 29.
    M. Fabre de la Ripelle, Fizika 4, 1 (1972);Google Scholar
  36. J. L. Friar, Nucl. Phys. A156, 43 (1970).CrossRefGoogle Scholar
  37. 30.
    S. P. Merkuriev, C. Gignoux, and A. Laverne, Ann. Phys. (N.Y.) 39, 30 (1976).MathSciNetADSCrossRefGoogle Scholar
  38. 31.
    R. de Tourreil and D. W. L. Sprung, Nucl. Phys. A201, 193 (1973).CrossRefGoogle Scholar
  39. 32.
    M. I. Mukhtarova, Yad. Fiz. 49, 338 (1989)Google Scholar
  40. M. I. Mukhtarova, Soy. J. Nucl. Phys. 49, 208 (1989).Google Scholar
  41. 33.
    M. Fabre de la Ripelle, Few-Body Systems 1, 181 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • J. L. Friar
    • 1
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations