Relativistic Approaches to the Few Body Problem

  • L. A. Kondratyuk
Part of the Few-Body Systems book series (FEWBODY, volume 6)


I discuss the applications of the Relativistic Hamiltonian Dynamics in the light -cone form to the description of few body (mainly few nucleon) systems and the relation of the Light-Cone Dynamics (LCD) to the quantum field theory and covariant equations.

When we discuss relativistic approaches we may have in mind relativistic field theory, relativistic hamiltonian dynamics, covariant equations, relativistic strings etc. In this talk I would want to discuss the relation of the Light-Cone Dynamics (LCD) to the field theory and covariant equations. Then I shall speak on the applications of LCD to the description of two-, three and four nucleon systems as well as to relativistic form-factors and nuclear deep inelastic structure functions. In particular, I want to demonstrate that the convolution formula which expresses the nuclear structure function through the integral on the quark structure functions of nucleons can be derived in the framework of LCD and this formula does not contain the so called flux factor.


Channel Approximation Relativistic Correction Mass Operator Angular Momentum Operator Covariant Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Itzykson, J.-B. Zuber. Quantum Field Theory. Mc Graw-Hill Book Company, N.Y.Google Scholar
  2. 2.
    P.A.M. Dirac. Rev.Mod.Phys. 21, 392, (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    B. Bakamdjan, K.H. Thomas. Phys. Rev. 92, 1300 (1953).ADSCrossRefGoogle Scholar
  4. 4.
    F. Coester. Heiv. Phys. Acta 38, 7 (1965).MathSciNetMATHGoogle Scholar
  5. 5.
    L.L. Foldy, R.A. Krajcik. Phys. Rev. D12, 1700 (1975).MathSciNetADSGoogle Scholar
  6. 6.
    S.N. Sokolov. Dok. Akad. Nauk. USSR 233, 575 (1977);Google Scholar
  7. S.N. Sokolov. Theor. Math. Phys. 36, 193 (1978).CrossRefGoogle Scholar
  8. 7.
    H.Leutwyler, J. Stern. Ann. Phys. (N.Y.) 112, 490 (1979).MathSciNetGoogle Scholar
  9. 8.
    B.L.G. Bakker, L.A. Kondratyuk, M.V. Terentiev. Nucl. Phys. B158, 497 (1979).ADSCrossRefGoogle Scholar
  10. 9.
    L.A. Kondratyuk, M.V. Terentiev. Yad. Phys. 31, 1087 (1980).Google Scholar
  11. 10.
    R.P. Feynman, M. Kislinger, F. Ravndal.Phys. Rev. D3, 2706 (1971).CrossRefGoogle Scholar
  12. 11.
    S. Weinberg. Phys. Rev. 150, 1313 (1966).ADSCrossRefGoogle Scholar
  13. L L Frankfurt, M.I.Strikman. Phys. Rev. C76, 215 (1981).Google Scholar
  14. 13.
    L.A. Kondratyuk, J. Vogelzang, M.S. Fanchenko. Phys. Lett. 98B, 405 (1981).Google Scholar
  15. 14.
    A.I. Veselov, L.A. Kondratyuk. Yad. Phys. 36, 343 (1982).Google Scholar
  16. 15.
    L.A. Kondratyuk, F.M. Lev, V.V.Soloviev. Few- Body Systems. 7, 55 (1989).ADSGoogle Scholar
  17. 16.
    L.A. Kondratyuk, M.I.Strikman. Nucl. Phys. A426, 575 (1984).CrossRefGoogle Scholar
  18. 17.
    I.L. Grach, L.A. Kondratyuk. Yad. Phys. 39, 316 (1984);Google Scholar
  19. L.L. Frankfurt, I.L. Grach, L.A. Kondratyuk, M.I.Strikman. Phys. Rev.Lett. 62, 387 (1989).ADSCrossRefGoogle Scholar
  20. 18.
    P.L. Chung, F. Coester, B.D. Keister, W.N. Polyzou. Phys. Rev. C37, 2000, (1988).Google Scholar
  21. 19.
    G.Brown, A.D.Jackson, T. Kuo. Nucl. Phys. A133, 481 (1969).ADSGoogle Scholar
  22. 20.
    L.A. Kondratyuk, F.M. Lev, L.V. Schevchenko. Yad. Phys. 33, 1208 (1981);Google Scholar
  23. L.A. Kondratyuk, F.M. Lev, L.V. Schevchenko. Yad. Phys. 36, 377 (1982).Google Scholar
  24. 21.
    Ch. Hajduk, A.M. Green, M.E. Sainio. Nucl. Phys. A337, 13 (1980).CrossRefGoogle Scholar
  25. 22.
    F.M. Lev. Yad. Phys. 45, 26 (1987).Google Scholar
  26. 23.
    H. Osborn. Nucl. Phys. B38, 429, (1972).ADSCrossRefGoogle Scholar
  27. 24.
    B.V. Berestetsky, M.V. Terentiev.Yad. Phys. 24, 1044 (1976).Google Scholar
  28. 25.
    L.A. Kondratyuk. In: “ Progress and Perspectives in Nuclear Physics at Intermediate Energy ” (Ed. by S.Boffi, C; Ciofi degli Atti, M.Giannini) World Scientific, 1989.Google Scholar
  29. 26.
    S.V. Akulinichev et. al. Phys. Rev.Lett. 55, 2239 (1985).ADSCrossRefGoogle Scholar
  30. 27.
    B.L. Birbrair et. al. Phys. Lett. 166B, 119 (1986).Google Scholar
  31. 28.
    G.V. Dunne, A.W. Thomas. Nucl. Phys. A455, 701 (1986).CrossRefGoogle Scholar
  32. 29.
    L.L. Frankfurt, M.I.Strikman. Phys. Lett. 183B, 254 (1987).Google Scholar
  33. 30.
    C. Ciofi degli Atti, S. Liuti. Phys. Lett. B225, 215 (1989);Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • L. A. Kondratyuk
    • 1
  1. 1.Institute of Theoretical and Experimental PhysicsMoscowUSSR

Personalised recommendations