Advertisement

Muon Catalyzed Fusion (µCF) as a Method for Studying Few Nucleon Systems

  • L. N. Bogdanova
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 6)

Abstract

The theoretical analysis of the methods to obtain information about the properties of few nucleon systems from the muon catalysis studies is presented. The kinetics of the µCF processes in the hydrogen isotope mixture is considered and the observables in µCF are related to the characteristics of the fusion reactions between hydrogen isotopes, e.g., the astrophysical S-factor in the E = 0 limit.

The kinetics of µCF in HD mixture is discussed and the doublet and quartet pd spin state contributions to M l pd radiative capture at rest is obtained from the analysis of gamma-ray yields in pdµµ 3 He + γ reaction. The non-radiative fusion channel pdµµ + 3 He is analyzed and the E0 transition matrix element is determined from the data on the absolute muon yields.

The possibility to extract the M1 pt radiative capture constant and the E0 matrix element of 4 He*(0+) excitation is explained.

It is shown that the properties of the ddµ molecule and the specific features of its formation mechanism enable one to separate the P- and S-wave ddpt, n 3 He reaction constants.

The spectra of reaction products for ttu4 He + µ + 2n, µ 4 He + 2n are shown to be sensitive to fusion mechanism and the possibility to extract reduced nuclear widths for 6 He* decay is pointed out.

The perspectives and unsolved problems are outlined.

Keywords

Fusion Reaction Fusion Rate Hydrogen Isotope Reaction Constant Radiative Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.I. Ponomarev, Contemporary Physics 31 (1990) 219;ADSCrossRefGoogle Scholar
  2. S.S. Gerstein, Yu.V. Petrov and L.I. Ponomarev, Uspekhi Fiz.Nauk 160 (1990) 3 [Soy. Phys. Uspekhi (1990)].Google Scholar
  3. [2]
    L.N. Bogdanova, V.E. Markushin, V.S. Melezhik and L.I. Ponomarev, Sov. Journ. Nucl. Phys. 34 (1981) 662.Google Scholar
  4. [3]
    S.A. Alexander, P. Froelich, and H.J. Monkhorst, Phys. Rev. A41 (1990) 2854; Errata (1991).ADSGoogle Scholar
  5. [4]
    L.N. Bogdanova, Muon Catalyzed Fusion 2 (1988) 359.Google Scholar
  6. [5]
    L.W. Alvarez et al., Phys. Rev. 105 (1957) 1127.Google Scholar
  7. [6]
    J.G. Fetkovich et al., Phys. Rev. Lett. 4 (1960) 570.ADSCrossRefGoogle Scholar
  8. [7]
    M. Schiff, Nuovo Cimento 22 (1961) 66.CrossRefGoogle Scholar
  9. [8]
    J.H. Doede, Phys. Rev. 132 (1963) 1782.Google Scholar
  10. [9]
    V.P. Dzhelepov et al., Soy. Phys. JETP 23 (1966) 820.ADSGoogle Scholar
  11. [10]
    A.A shmore et al., Proc. Roy. Soc. 71 (1958) 161.ADSCrossRefGoogle Scholar
  12. [11]
    E.J. Bleser et al., Phys. Rev. 132 (1963) 2679.Google Scholar
  13. [12]
    V.M. Bystritsky et al., Soy. Phys. JETP 43 (1976) 606; 44 (1976) 881.Google Scholar
  14. [13]
    W. Bertl et al., Atomkernenergie 43 (1983) 184.Google Scholar
  15. [14]
    Ya.B. Zeldovich and S.S. Gerstein. Sov. Phys. Uspekhi 3 (1961) 593.ADSCrossRefGoogle Scholar
  16. [15]
    S.S. Gerstein, Sov. Phys. JETP 13 (1961) 488.MathSciNetGoogle Scholar
  17. [16]
    A.V. Matveenko and L.I. Ponomarev, Sov. Phys. JETP 32 (1971) 871.ADSGoogle Scholar
  18. [17]
    V.S. Melezhik and J. Wozniak, Phys. Lett. A116 (1986) 370;CrossRefGoogle Scholar
  19. L. Bracci, C. Chiccoli, P. Pasini, G. Fiorentini, J. Wozniak and V.S. Melezhik, Phys. Lett. A165 (1989) 459.Google Scholar
  20. [18]
    P. Kammel, W.H. Breunlich, M. Cargnelli, H.G. Mahler, J. Zmeskal, W. Bertl and C. Petitjean, Phys. Rev. A28 (1983) 2611.Google Scholar
  21. [19]
    D.D. Bakalov, S.I. Vinitsky and V.S. Melezhik, Sov. Phys. JETP 52 (1980) 820.ADSGoogle Scholar
  22. [20]
    L.N. Bogdanova, Yu.A. Kuperin, A.A. Kvitsinsky, V.E. Markushin, S.P. Merkuriev, L.I. Ponomarev, Muon Catalyzed Fusion 3 (1988) 377.Google Scholar
  23. [21]
    G.M. Griffiths, M. Lalwnd C.D. Scarfe, Can. J. Phys. 41 (1963) 724.ADSCrossRefGoogle Scholar
  24. [22]
    L.N. Bogdanova and V.E. Markushin, Muon Catalyzed Fusion 5 (1990) 189.Google Scholar
  25. [23]
    C. Petityean, K. Lou, P. Ackerbauer et al., Muon Catalyzed Fusion 5 (1990) 191.Google Scholar
  26. [24]
    J.L. Friar, B.F. Gibson, H.J. Jean and G.L. Payne, Phys. Rev. Lett. 66 (1991) 1827.Google Scholar
  27. [25]
    J.L. Friar, B.F. Gibson, and G.L. Payne, Phys. Lett. B251 (1990) 11.Google Scholar
  28. [26]
    M. Vetterli et al., Phys. Rev. C38 (1988) 2503.Google Scholar
  29. [27]
    F.J. Hartmann, H. Bossy, H. Daniel et al., Muon Catalyzed Fusion 2 (1988) 53;Google Scholar
  30. P. Baumann, H. Daniel, S.Grunewald et al., in Proceedings of an International Symposium on Muon Catalyzed Fusion - pCF89, ed. by J.D.Davies (Rutherford Appleton, 1990), p. 38.Google Scholar
  31. [28]
    L.N. Bogdanova and V.E. Markushin, Muon Catal. Fusion 4 (1989) 103.Google Scholar
  32. [29]
    J.E. Perry and S.J. Bame, Phys. Rev. 99 (1955) 1368.Google Scholar
  33. [30]
    D.J. Wagenaar et al. Phys. Rev. C39 (1989) 352.ADSGoogle Scholar
  34. [31]
    V.P. Alfimenkov et al., Sov. Journ. Nucl. Phys. 31 (1980) 10;Google Scholar
  35. M. Suffert and R. Berthollet, Nucl. Phys. A318 (1979) 54;CrossRefGoogle Scholar
  36. F.L.H. Wolfs et al., Phys. Rev. Lett. 63(1989) 2721;Google Scholar
  37. R. Welverman et al., Nucl. Phys. A526 (1991) 265.CrossRefGoogle Scholar
  38. [32]
    J.D. Jackson, private communication.Google Scholar
  39. [33]
    I.S. Towner and F.C. Khanna, Nucl. Phys. A356 (1981) 445;CrossRefGoogle Scholar
  40. J. Carlson, D.O. Risca, R. Schiavilla and R.B. Wiringa, Phys. Rev. C42 (1990) 830.ADSGoogle Scholar
  41. [34]
    L.N. Bogdanova and V.E. Markushin, Muon Catalyzed Fusion 4 (1989) 103, Nucl. Phys. A508 (1990) 29 c.Google Scholar
  42. [35]
    R.F. Frosch et al., Nucl. Phys. A110 (1968) 657;CrossRefGoogle Scholar
  43. Th. Walcher, Phys. Lett. 31B (1970) 442;CrossRefGoogle Scholar
  44. S. Fiarman and W.E. Meyerhof, Nucl. Phys. A206 (1973) 1;CrossRefGoogle Scholar
  45. G. Kobschall et al., Phys. Rev. 130 (1963) 1987.Google Scholar
  46. [36]
    V.S. Vasilevsky and I.Yu. Ryibkin, Sov. Journ. Nucl. Phys. 46 (1987) 220; 48 (1988) 217.Google Scholar
  47. [37]
    L.N. Bogdanova et al., Phys. Lett. 115B (1982) 171; Errata 167B (1986) 485.Google Scholar
  48. [38]
    B.P. Adyasevich, V.G. Antonenko, and V.E. Bragin, Sov. Journ. Nucl. Phys. 33 (1981) 173; JETP Lett. 40 (1984) 112.Google Scholar
  49. [39]
    D.V. Balin et al., Phys. Lett. 141B (1984) 173; JETP Lett. 40 (1984) 112.Google Scholar
  50. [40]
    G.M. Hale, Muon Catalyzed Fusion 5 (1990) 227.Google Scholar
  51. [41]
    D.V. Balin, V.N. Baturin, Yu.A. Chestnov et al., Muon Catalyzed Fusion 5 (1990) 163.Google Scholar
  52. [42]
    A. Krauss, H.W. Becker, H.P. Trautvetter and C. Rolfs, Nucl. Phys. A465 (1987) 150.CrossRefGoogle Scholar
  53. [43]
    L. Bracci, G. Fiorentini, V.S. Melezhik et al., Nucl. Phys. A513 (1990) 316; Phys. Lett. 153A (1991) 456.Google Scholar
  54. [44]
    H.M., Agnew et al., Phys. Rev. 84 (1951) 862;ADSCrossRefGoogle Scholar
  55. V.I. Serov et al., Atomnaya Energia 42 (1977) 59.CrossRefGoogle Scholar
  56. [45]
    W.H. Breunlich, M. Carnelli, P. Kammel et al., Muon Catalyzed Fusion 1 (1987) 67.Google Scholar
  57. [46]
    J.L. Friar, this volume.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • L. N. Bogdanova
    • 1
  1. 1.Institute for Theoretical and Experimental PhysicsMoscowUSSR

Personalised recommendations