Advertisement

p-d Capture Reactions in Muonic Molecules

  • J. L. Friar
Part of the Few-Body Systems book series (FEWBODY, volume 6)

Abstract

Capture reactions for very low-energy n-d and p-d systems are calculated and compared with experiment, as are low-energy n-d and p-d scattering. We find excellent agreement for the n-d scattering lengths, but poor agreement for the p-d case, which we believe is a problem with the experimental extrapolation. The n-d radiative capture is sensitive to details of the meson-exchange currents, but reasonable models agree with the data. The latter models are in good agreement with experiment when extended to the p-d case. Our large quartet capture rate resolves a long-standing anomaly. The E0 capture matrix element recently obtained from a reanalysis of internal conversion in muonic molecules is in excellent agreement with our predictions. This matrix element is very clean theoretically and provides the best test of the calculations.

Keywords

Matrix Element Internal Conversion Radiative Capture Impulse Approximation Capture Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 31, 2266 (1985);ADSCrossRefGoogle Scholar
  2. C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 33, 401 (1986);ADSCrossRefGoogle Scholar
  3. J. L. Friar, B. F. Gibson, and G. L. Payne, Ibid, 35, 1502 (1987).Google Scholar
  4. 2.
    J. Carlson, Phys. Rev. C 36, 2026 (1987).ADSCrossRefGoogle Scholar
  5. 3.
    J. Carlson, private communication.Google Scholar
  6. 4.
    W. Glöckle, H. Witala, and Th. Cornelius, Nucl. Phys. A508, 115c (1990).ADSCrossRefGoogle Scholar
  7. 5.
    C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 44, 50 (1991).ADSCrossRefGoogle Scholar
  8. 6.
    W. H. Breunlich, P. Kammell, J. S. Cohen, and M. Leon, Annu. Rev. Nucl. Part. Sci. 39, 311 (1989).ADSCrossRefGoogle Scholar
  9. 7.
    Gy. Bencze, C. Chandler, J. L. Friar, A. G. Gibson, and G. L. Payne, Phys. Rev. C35, 1188 (1987).Google Scholar
  10. 8.
    A. C. Phillips, Phys. Rev. 142, 984 (1966).MathSciNetADSCrossRefGoogle Scholar
  11. 9.
    R. V. Reid, Ann. Phys. (NY) 50, 441 (1968);ADSCrossRefGoogle Scholar
  12. See B. Day, Phys. Rev. C24, 1203 (1981)Google Scholar
  13. 10.
    R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Phys. Rev. C29, 1207 (1984).ADSGoogle Scholar
  14. 11.
    S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W. E. Blatt, and B. H. J. McKellar, Nucl. Phys. A317, 242 (1979).CrossRefGoogle Scholar
  15. 12.
    H. T. Coelho, T. K. Das, and M. R. Robilotta, Phys. Rev. C 28, 1812 (1983).ADSCrossRefGoogle Scholar
  16. 13.
    W. Dilg, L. Koester, and W. Nistler, Phys. Lett. 36B, 208 (1971).Google Scholar
  17. 14.
    W. T. H. Van Oers and K. W. Brockman, Jr., Nucl. Phys. A92, 561 (1967).CrossRefGoogle Scholar
  18. 15.
    J. Arvieux, Nucl. Phys. A221, 253 (1974).CrossRefGoogle Scholar
  19. 16.
    E. Huttel, W. Arnold, H. Baumgart, H. Berg, and G. Clausnitzer, Nucl. Phys. A406, 443 (1983);CrossRefGoogle Scholar
  20. E. Huttel, W. Arnold, H. Berg, H. H. Kranse, J. Ulbricht, and G. Clausnitzer, Ibid, A406, 435 (1986).Google Scholar
  21. 17.
    C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 39, 1261 (1989).ADSCrossRefGoogle Scholar
  22. 18.
    E. T. Jurney, P. J. Bendt, and J. C. Browne, Phys. Rev. C 25, 2810 (1982);Google Scholar
  23. J. S. Merritt, J. G. V. Taylor, and A. W. Boyd, Nucl. Sci. Eng. 34, 195 (1968).Google Scholar
  24. We have combined the results of these two latest measurements.Google Scholar
  25. 19.
    L. I. Schiff, Phys. Rev. 52, 242 (1937).ADSMATHCrossRefGoogle Scholar
  26. 20.
    J. L. Friar, B. F. Gibson, and G. L. Payne, Phys. Lett. 251B, 11 (1990).Google Scholar
  27. 22.
    R. Schiavilla, V. R. Pandharipande, and D. O. Riska, Phys. Rev. C 40, 2294 (1989).ADSCrossRefGoogle Scholar
  28. 23.
    G. M. Griffiths, M. Lal, and C. D. Scarfe, Can. J. Phys. 41, 724 (1963).ADSGoogle Scholar
  29. 24.
    J. L. Friar, B. F. Gibson, H. C. Jean, and G. L. Payne, Phys. Rev. Lett. 66, 1827 (1991).ADSCrossRefGoogle Scholar
  30. 27.
    S. Cohen, D. L. Judd, and R. J. Riddell, Jr., Phys. Rev. 119, 384 (1960).ADSCrossRefGoogle Scholar
  31. 28.
    S. S. Gerstein, Soy. Phys. JETP 13, 488 (1961).MathSciNetGoogle Scholar
  32. 30.
    C. Petitjean, et al.,in Proceedings of an International Symposium on Muon-Catalyzed Fusion —pCF89,ed. by J. D. Davies (Rutherford Appleton, 1990), p. 42; C. Petitjean, et al.,(unpublished).Google Scholar
  33. 31.
    L. N. Bogdanova, Yu. A. Kuperin, A. A. Kvitsinsky, V. E. Markushin, S. P. Merkuriev, and L. I. Ponomarev, Muon Catal. Fusion 3, 377 (1988).Google Scholar
  34. 32.
    S. A. Alexander, P. Froelich, and H. J. Monkhorst, Phys. Rev. A 41, 2854 (1990);ADSCrossRefGoogle Scholar
  35. S. A. Alexander; private communication.Google Scholar
  36. 33.
    L. N. Bogdanova and V. E. Markushin (unpublished).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • J. L. Friar
    • 1
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations