Antiproton Reactions and Charm (With and Without Nuclei)

  • Kamal K. Seth
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 6)


The availability of pure, high intensity, ultra-high energy resolution antiproton beams in the 0.1 to 10 GeV/c range has made it possible to make precision studies of few-quark systems and the interactions between them. Proton-antiproton interaction can now be studied with precision heretofore achieved only in the study of the proton-proton interaction. It has become possible to test scaling predictions of perturbative QCD, e.g., for the proton form-factor in the time-like region. Precision measurements of the spectra of qq mesons with charm and beauty quarks are leading to deeper understanding of the quark-quark interactions. Rather unusual and exotic effects are predicted when charmonium is embedded in nuclei. Some of these new developments are described and the feasibility of several nuclear experiments is examined.


Production Cross Section Nuclear Target Large Momentum Transfer Charmonium State Formation Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fermilab experiment E-760, “A Proposal to Investigate the Formation of Charmonium States Using the pbar Accumulator Ruig”, Collaboration: Fermilab, Universities of Errara, Genoa, and Torino, University of California (Irvine), Northwestern University and Pennsylvania State University.Google Scholar
  2. 2.
    Review of Particle Properties“ Physics Letters B239 (1990) 1.Google Scholar
  3. 3.
    E.D. Bloom and C.W. Peck, Ann. Rev. Nucl. Part. Sci. 33 (1983) 143.ADSCrossRefGoogle Scholar
  4. 4.
    J.Lee-Franzini, Nude Phys. B (Proc. Suppl.) 3 (1988) 139.Google Scholar
  5. 5.
    K.K. Seth, Proc. Int. Conf. on Medium and High Energy Nuclear Physics, edited by W.-Y Pauchy Hwang, K.-F. Liu and Y. Tzeng, World Scientific (Singapore 1989 ) pp. 773–788.Google Scholar
  6. 6.
    C. Baglin et al., Phys. Lett B171 (1986) 135; B172 (1986) 455, B187 (1987) 191, B195 (1987) 85; B225(1989) 296; B231 (1989) 557; also Nucl. Phys. B286 (1987) 592.Google Scholar
  7. 7.
    Design Report: Tevatron I Project, Fermi National Accelerator Laboratory, Batavia, IL (unpublished), Sept. 1984; J. Peoples, Proc. Workshop on the Design of a Low Energy Antiproton Facility, edited by D. Cline, World Scientific (Singapore 1986) p.Google Scholar
  8. 8.
    L. Bartoszek et al., Nucl. Instr. Meth. A301 (1991) 47. M.A. Hasan et al., Nucl. Instr. Meth. A295 (1990) 73. M. Sarmiento et al., Nucl. Instr. Meth. (to be published).Google Scholar
  9. 9.
    T.A. Armstrong et al., Phys. Rev. Lett., submitted for publication.Google Scholar
  10. 10.
    P. Kroll and W. Schweiger, Nucl. Phys. A503 (1989) 865.CrossRefGoogle Scholar
  11. 11.
    P. Jenni et al., Nucl Phys. B129 (1977) 232.ADSCrossRefGoogle Scholar
  12. 12.
    Y.L. Zhang et al., Proc. Hadron ‘81, University of Maryland, Aug. 1991.Google Scholar
  13. 13.
    S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett. 31 (1973) 1153; Phys. Rev. D11 (1975) 1309.Google Scholar
  14. 14.
    G. Bassompierre et al., Phys. Lett. 68B (1977) 477, also Nuovo Cimento 73A (1983) 347; B. Delcourt et al., Phys. Lett. 86B (1979) 395; D. Bisello et al., Nucl. Phys. B224 (1983) 379.Google Scholar
  15. 15.
    G. Bardin et al., Phys. Lett. B255 (1991) 149.Google Scholar
  16. 16.
    R. Anderson et al., Phys. Rev. Lett. 38 (1977) 263.ADSCrossRefGoogle Scholar
  17. 17.
    U. Camerini et al., Phys. Rev. Lett. 35 (1975) 1040; B. Knapp et al., Phys. Rev. Lett. 34 (1975) 1040; J. Branson et al., Phys. Rev. Lett. 38 (1977) 1334, M.D. Sokoloff et al., Phys. Rev. Lett. 57 (1986) 3003.Google Scholar
  18. 18.
    S.J. Brodsky and A.H. Mueller, Phys. Lett. B206 (1988) 685.Google Scholar
  19. 19.
    T. Matsui and H. Satz, Phys. Lett. B179 (1986) 416.Google Scholar
  20. 20.
    C. Baglin et al., Phys. Rev. Lett. B220 (1989) 471; B251 (1990) 465; B255 (1991) 459.Google Scholar
  21. 21.
    H. Satz, Nucl. Phys. A. 488 (1988) 511c; V. Cerny et al., Z. Phys. C46 (1990) 481, and references therein.Google Scholar
  22. 22.
    G.R. Farrar, L.L. Frankfurt, M.I. Strikman and H. Liu, Nucl. Phys. B345 (1990) 125.ADSCrossRefGoogle Scholar
  23. 23.
    A.S. Caroll et al., Phys. Rev. Lett. 61 (1988) 1698.ADSCrossRefGoogle Scholar
  24. 24.
    B. Parker et al., Phys. Rev. Lett. 63 (1989) 1570.ADSCrossRefGoogle Scholar
  25. 25.
    R.S. Bhalerao and L.C. Liu, Phys. Rev. Lett. 54 (1985) 865; LC. Liu and Q. Haider, Phys. Rev. C345 (1986) 1845; Q. Haider and L.C. Liu, Phys. Lett. B195 (1986) 515.Google Scholar
  26. 26.
    G.L Li, W.K. Cheng, and T.T.S. Kuo, Phys. Lett. 8195 (1987) 515.Google Scholar
  27. 27.
    R.E. Chrien et al., Phys. Rev. Lett 60 (1988) 2595.ADSCrossRefGoogle Scholar
  28. 28.
    S.J. Brodsky, I. Schmidt, and G.F. de Teramond, Phys. Rev. Lett. 64 (1990) 1011.ADSCrossRefGoogle Scholar
  29. 29.
    A Donnachie and P.V. Landshoff; Nucl. Phys. B244 (1984) 322.ADSCrossRefGoogle Scholar
  30. 30.
    S.J. Brodsky and B. Chertok, Phys. Rev. D14 (1976) 3003.ADSGoogle Scholar
  31. 31.
    R. Arnold et al., Phys. Rev. Lett. 40 (1978) 1429.ADSCrossRefGoogle Scholar
  32. 32.
    Our estimate of S - 2 x 10 is substantially different from that quoted by Brodsky et al. [28]. We have used experimentally measured Fd2 (4.62 GeV/c2) - 1 x 10 8. due to Arnold et al. (Phys. Rev. Lett. 35 (1975) 776).Google Scholar
  33. 33.
    K. Maruyama, Proc. Workshop on Science at the KAON factory, TRIUMF (1990) vol. 2. Maruyama makes the mistake of assuming a beam intensity of 1.1x108 Ws with a 0.1% energy resolution. Actually, this intensity is projected for Ap/p = 4%. Maruyama also assumes formation cross sections of 10 32 cm2, which are six orders of magnitude larger than our calculated value of 10-38 cm2. The only way such a large discrepancy can arise is if Mazuyama has mistakenly used FA (Q2) instead of FA2(Q2).Google Scholar
  34. 34.
    D. Kharzeev, INFN (Pavia), preprint FNT/T-90/22, Dec. 1990.Google Scholar
  35. 35.
    E.V. Shuryak, Nucl. Phys. B198 (1982) 83.ADSCrossRefGoogle Scholar
  36. 36.
    G.E. Brown, priv. comm.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Kamal K. Seth
    • 1
  1. 1.Northwestern UniversityEvanstonUSA

Personalised recommendations