The Quark Model, Deuteron Formfactors and Nuclear Magnetic Moments

  • Amand Faessler
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 6)


Deuteron properties and nuclear magnetic moments are studied in the non-relativistic quark cluster model. The charge monopole, quadrupole and magnetic-dipole form factors and the tensor polarization of the deuteron in this microscopic meson-quark cluster model are calculated. The deuteron wave function is derived from a microscopic 6-quark Hamiltonian which, in addition to a quadratic confinement potential, includes the one-pion and the one-gluon exchange potentials between quarks. The electromagnetic current operators are constructed on the quark level, i.e., the photon is coupled directly to the quarks. Aside from the one-body impulse current, pionic and gluonic exchange current corrections are included. Due to the Pauli principle on the quark level, new quark interchange terms arise in the one-body and two-body current matrix elements, that are not present on the nucleon level. While these additional quark exchange currents are small for low momentum transfers, we find that they appreciably influence the electromagnetic structure of the deuteron beyond a momentum transfer of q = 5fm −1. We construct the quark exchange current operators on the quark level and then eliminate the quark degrees of freedom. The photon is directly coupled to the quarks. This effective current contains new non-local and isospin dependent terms which are generated by the Pauli principle on the quark level (quark exchange between nucleons). When we evaluate these quark exchange currents in nuclei, we use harmonic oscillator wave functions as nuclear wave functions including short-range Brueckner correlations. We solve the Bethe-Goldstone equation to include this short-range correlations in our effective N N potential, which is derived from a microscopic quark Hamiltonian. We investigate also the role of these additional quark exchange currents in the magnetic moments and the elastic magnetic form factors of several closed shell±1 nuclei, such as 15 N, 17 O and 39 K. We specificly discuss the results for M 1 electron scattering 15 N and the isovector magnetic moment for the A=39 system. Quark degrees change the Schmidt value of this isovector moment by −20%.


Magnetic Form Factor Deuteron Wave Function Harmonic Oscillator Quantum Short Range Repulsion Quark Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Faessler, F. Fernandez, G. Lübeck, K. Shimizu, Phys.Lett. 112B (1982) 201Google Scholar
  2. A. Faessler, F. Fernandez, G. Lübeck, K. Shimizu, Nucl. Phys. A402 (1983) 555CrossRefGoogle Scholar
  3. 2.
    M. Oka, K. Yazaki, Progr. Theor. Phys. 66 (1981) 556–572ADSCrossRefGoogle Scholar
  4. 3.
    M. Oka, K. Yazaki, in Quarks and Nuclei, ed. W. Weise (World Scientific, Singapore) p. 489Google Scholar
  5. 4.
    K. Bräuer, A. Faessler, F. Fernandez, K. Shimizu, Z. Phys. A320 (1985) 609ADSGoogle Scholar
  6. 5.
    K. Shimizu, Rep. Progr. Phys. 52 1989) 1ADSCrossRefGoogle Scholar
  7. 6.
    A. Arima, H. Horie, Progr. Theor. Phys. 11 (1954) 509ADSCrossRefGoogle Scholar
  8. A. Arima, H. Horie, Progr. Theor. Phys. 12 (1954) 623ADSCrossRefGoogle Scholar
  9. 7.
    K. Shimizu, Phys. Lett. 148B (1984) 418Google Scholar
  10. 8.
    F. Fernandez, E. Oset, Nude. Phys. A455 (1986) 720ADSCrossRefGoogle Scholar
  11. 9.
    Y. Yamauchi, A. Buchmann, A. Faessler, Nucl. Phys. A A494 (1989) 401ADSCrossRefGoogle Scholar
  12. 10.
    A. Buchmann, Y. Yamauchi, A. Faessler, Nucl. Phys. A496 (1989) 621CrossRefGoogle Scholar
  13. 11.
    Y. Yamauchi, A. Buchmann, A Faessler, A. Arima, Nucl. Phys. A526 (1991) 495CrossRefGoogle Scholar
  14. 12.
    A. Faessler, F. Fernandez, Phys. Lett. 124B (1983) 124Google Scholar
  15. 13.
    R. Arndt et al., Phys. Rev. C15 (1977) 1002ADSGoogle Scholar
  16. 14.
    U. Straub, thesis University of TübingenGoogle Scholar
  17. 15.
    A. Faessler, U. Straub, Ann. Physik 47 (1990) 439ADSCrossRefGoogle Scholar
  18. A. Faessler, U. Straub, Nucl. Phys. A483 (1988) 686CrossRefGoogle Scholar
  19. 16.
    A. Faessler, Nuclear and Particle Physics p. 238: Editors: C. J. Burden, B. A. Robson, 1990, World ScientificGoogle Scholar
  20. 17.
    A. Buchmann, H. Ito, Y. Yamauchi, A. Faessler, J. Phys. G 14 (1988) 1037ADSCrossRefGoogle Scholar
  21. 18.
    M. Lacombe et al., Phys. Lett. B101 (1981) 139Google Scholar
  22. 19.
    M. E. Elias et al., Phys. Rev. 177 (1969) 2075ADSCrossRefGoogle Scholar
  23. S. Galster et al., Nucl. Phys. B 32 (1972) 221ADSCrossRefGoogle Scholar
  24. R. G. Arnold et al., Phys. Rev. Lett. 35 (1975) 776ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Amand Faessler
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenGermany

Personalised recommendations