Few-Body Problems in Physics pp 128-135 | Cite as

# S — D Transition in the Nucleon-Nucleon System

## Abstract

*S*—

*D*transition amplitude. The accurate knowledge of this quantity is important for the calculation of some of the central quantities of nuclear physics:

- (i)
For a nucleon-nucleon potential that explains the deuteron binding energy, the binding energy of the

*A*=3,4 systems and nuclear matter strongly depend on the S—D transition; a stronger tensor force leads to a reduced binding energy. Of particular importance is the question whether these binding energies can be explained without introducing a three-body force. Only for a very weak tensor force can the binding energy be explained without invoking a three-body force. - (ii)
The probability of

*L*=2 states in light nuclei depends directly on the strength of the S—D transition. Without accurate knowledge of these D-states, an understanding of light nuclei — test cases for the description of nuclei in terms of nucleons, as the Schrödinger equation can be exactly solved — remains incomplete. - (iii)
These

*L*= 2 states have also important consequences for an understanding of non-nucleonic degrees of freedom. In the observables most sensitive to these non-nucleonic degrees of freedom — magnetic isovector form factors of light nuclei — S—D transitions and meson exchange currents have effects of the same size, but opposite sign. To determine the mesonic effects, one needs to accurately know the S—D transition contribution.

## Keywords

Neutron Beam Light Nucleus Tensor Force Phase Shift Analysis Meson Exchange Current## Preview

Unable to display preview. Download preview PDF.

## References

- [1]R. Machleidt.
*12th Conf. on Few Body Problems in Physics*, Vancouver, Canada, Contrib. Papers:G 51, 1989.Google Scholar - [2]J. Binstock and R. Bryan.
*Phys. Rev*., D 9: 2528, 1974.ADSGoogle Scholar - [3]D.V. Bugg, J.A Edgington, W.R. Gibson, N. Wright, N.M. Stewart, A.S. Clough, D. Axen, G.A. Ludgate, C.J. Oram, L.P. Robertson, J.R. Richardson, and C. Amsler.
*Phys. Rev*. C, 21: 1004, 1980.Google Scholar - [4]R. Henneck, C. Gysin, M. Hammans, J. Jourdan, W. Lorenzon, M. A. Pickar, I. Sick, S. Burzynski, and T. Stammbach.
*Nucl. Instr. and Meth*, A259: 329, 1987.ADSCrossRefGoogle Scholar - [5]M. A. Pickar, S. Burzynski, C. Gysin, M. Hammans, R. Henneck, W. Lorenzon, I. Sick, A. Berdoz, and F. Foroughi.
*Phys. Rev*., C 42: 20, 1990.ADSGoogle Scholar - [6]P. Haffter, J. Campbell, C. Brogli-Gysin, R. Henneck, J. Jourdan, M. Hammans, G. Masson,, M. A. Pickar, I. Sick, J.A. Konter, S. Mango, and B. van den Brandt.
*to be pubi*.Google Scholar - [7]G. Fink, P. Doll, T.D. Ford, R. Garrett, W. Heeringa, K. Hofmann, H.O. Klages, and H. Krupp.
*Nucl. Phys. A*, 518: 561, 1991.Google Scholar - [8]P. Doll et. al.
*12th Int. Conf. on Few Body Problems in Physics*, Vancouver, B.C.:Contr. Papers C16, 1989.Google Scholar - [9]P.W. Lisowski, R.E. Shamu, G.F. Auchampaugh, N.S.P. King, M.S. Moore, G.L. Morgan, and T.S. Singleton.
*Phys. Rev. Lett*., 49: 255, 1982.ADSCrossRefGoogle Scholar - [10]R. A. Arndt, J. Binstock, and R. Bryan. Phys. Rev., D 8: 1397, 1973.ADSGoogle Scholar
- [11]P.H. Bowen, J.P. Scanlon, G.H. Stafford, J.J. Thresher, and P.E. Hodgson.
*Nucl. Phys*., 22: 640, 1961.CrossRefGoogle Scholar - [12]J.P. Scanlon, G.H. Stafford, J.J. Thresher, P.H. Bowen, and A. Langsford.
*Nucl. Phys*., 41: 401, 1963.CrossRefGoogle Scholar - [13]R. A. Arndt.
*private communication*, 1990.Google Scholar - [14]
- [15]R. A. Arndt, J.S. Hyslop, and L.D. Roper.
*Phys. Rev. D*, 35: 128, 1987.CrossRefGoogle Scholar - [16]R. Machleidt.
*Adv. Nucl. Phys*., 19: 189, 1989.Google Scholar - [17]M. Lacombe, B. Loiseau, J.M. Arndt Richard, R. Vinh Mau, J. Cote, P. Pires, and R. deTourreil.
*Phys. Rev*., C21: 861, 1980.ADSCrossRefGoogle Scholar - [18]D. V. Bugg.
*Phys. Rev*. C, 41: 2708, 1990.ADSCrossRefGoogle Scholar