An Equational Constraint Logic approach to Conceptual Modelling

  • María Alpuente
  • María José Ramírez
Conference paper


One relevant approach for developing advanced database and knowledge-based systems advocates the use of logic programming technology [17,28,30]. Recently, the logic programming paradigm has been generalized to the framework of Constraint Logic Programming (CLP), a generic scheme for the introduction of constraints in logic programming defined in [24, 25] and refined in [20]. In this framework, logic and equational programming have been integrated to define, as an instance of the scheme, a new declarative programming language, CLP(H/E), specialized in solving equations in equational theories [1, 2]. In this paper we present, using the experimental language CLP(H/E), equational constraint logic programming techniques as an effective tool to support database applications. These techniques are able to operate with running specifications in two useful modes, parsing mode and generating mode, as they are fitted in themselves with an inferential capability which can be used for plangeneration [28,33,41].


Logic Programming Employment Agency Constraint Loglc Program Free Post Program Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Alpuente and M. Falaschi. Narrowing as an Incremental Constraint Satisfactton Algorithm. In Proc. PLILP 91. Passau. Aug 1991. volume 528 of LNCS, pages 111–122, Springer-Verlag, Berlin, 1991.Google Scholar
  2. [2]
    M. Alpuente, M. Falaschi and G. Levi. Incremental Constraint Satisfaction for Equational Logic Programming. Technical Report TR-20-91, Universita di Pisa, Oct 1991. in Proc. ILPS’91 Workshop on Defeasible Reasoning ana Constraint Solving, pages 47-75, San Diego, Ca., Oct. 1991.Google Scholar
  3. [3]
    M. Alpuente and M. J. Ramirez. Rapid Prototyping of Database applications in the logic + equational EUROPA environment. In Proc. 7th Int’l Conf. on Expert Systems, Theory and Applications, pages 62-66, Los Angeles, Ca., 1990.Google Scholar
  4. [4]
    K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen and J. Managing, editors, Handbook of Theoretical Computer Science, volume B. North-Holland, Amsterdam, 1990.Google Scholar
  5. [5]
    K. Balzer. A 15 Year Perspective on Automatic Programming. IEEE Transactions on Software Engineering, volume SE-II (2). 1985.Google Scholar
  6. [6]
    M. Bellia and G. Levi. The relation between logic and functional languages: a survey. Journal of Logic Programming. 3:217–236, 1986.MATHCrossRefGoogle Scholar
  7. [7]
    P. Bosco, E. Giovannetti and C. Moiso. Narrowing vs. SLD-resolution. Theoretical Computer Science, 59: 3–23, Nortn-Holland, Amsterdam, 1988.Google Scholar
  8. [8]
    J. Bubenko and A. Olivé. Dynamic or Temporal modelling? An illustrative comparison. SYSLAB Working paper 117, Univ. of Stockholm, Sweden. 1986.Google Scholar
  9. [9]
    D. Costal. An approach to Validation of Deductive Conceptual Models. In Proc. 2 nd Int’l Workshop on the Deductive Approach to IS and DB, pages 50-72, Aiguablava (Catalonia), 1991.Google Scholar
  10. [10]
    C.S. dos Santos, T.S.E. Maibaum and A.L. Furtado. Conceptual Modelling of Database Operations. Journal of Computer and Information Sciences, 10(5):299–314. Plenum Press, NY, 1981.Google Scholar
  11. [11]
    D. De Groot and G. Lindstrom, (Ed.). Logic programming, Functions, Relations and Equations. Prentice-Hall. 1986.Google Scholar
  12. [12]
    N. Dershowitz and A. Plaisted. Equational Programming. Machine Intelligence, 11 Pages 21-56. Clarendon Press, 1988.Google Scholar
  13. [13]
    W. Dosh.G. Mascari and M. Wirsing. On the Algebraic Specification of Databases. In Proc. 8th VLDB Conf., Mexico, 1982.Google Scholar
  14. [14]
    H. D. Ehrich, K. Drosten and M. Gogolla. Towards an Algebraic Semantics for Database Specification, Knowledge and Data. In Proc. IFIP WG 2.6 Conf. on Database Semantics, Albufeira, 1986 North-Holland, Ansterdam, 1986Google Scholar
  15. [15]
    L. Fribourg. Slog: a logic programming language interpreter based on clausal superposition ana rewriting. In Proc. 1985 IEEE Intl Sump, on Logic Proqramming, pages 172-185. IEEE Computer Society Press, 1985.Google Scholar
  16. [16]
    A. Furtado and C. Moura. Expert Helpers to data-based Information Systems. In Expert databases systems. Benjamin-Cummings, 1986.Google Scholar
  17. [17]
    H. Gallaire, J. Minker and J.M. Nicolas. Logic and Databases: A deductive approach. In Computing Surveys, 16(3): 153–185, 1984.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    E. Giovannetti and C. Mpiso. A completeness result for E-unification algorithms based on Conditional Narrowing. In Foundations of Logic and Functional Programming, volume 306 of LNCS, pages 157–167. Springer-Verlag, Berlin, 1986.Google Scholar
  19. [19]
    M. Gustafsson, T. Karlsson and J. Bubenko. A declarative approach to Conceptual Information Modelling. In Information Systems design metnodologies: A comparative review, pages 93–142. North-Hollana, Amsterdam. 1982.Google Scholar
  20. [20]
    M. Höhfeld and G. Smolka. Definite Relations over Constraint Languages. LILOG-Report 53, IBM. Deutschland GmbH, 1988.Google Scholar
  21. [21]
    S. Hölldobler. Foundations of Equational Logic Programming, volume 353 of Lecture Notes in Artificial Intelligence. subseries of LNCS. Springer-Verlag, Berlin, 1989.CrossRefGoogle Scholar
  22. [22]
    S. Hölldobler and J. Schneeberger. A new Deductive approach to Planning. New Generation Computing. 8: 225–244, 1990.MATHCrossRefGoogle Scholar
  23. [23]
    H. Hussman. Unification in conditional-equational theories. In Proc. EUROCAL’85, volume 204 of LNCS. pages 543–553. Springer-Verlag, Berlin, 1986.Google Scholar
  24. [24]
    J. Jaffar and J. Lassez. Constraint Logic Programming. Technical report, Monash University, 1986.Google Scholar
  25. [25]
    J. Jaffar and J. Lassez. Constraint Logic Programming. In Proc. Fourteenth Annual ACM Sump, on Principles of Proqraming Languages, pages 111-119. ACM, 1987.Google Scholar
  26. [26]
    S. Kaplan. Fair conditional term rewriting systems: unification, termination and confluence. In Recent Trends in Data Type Specification, volume 116 of Informatik-Fachberichte, pages 136–155. Springer-Verlag, Berlin, 1986.Google Scholar
  27. [27]
    J. W. Klop Term Rewriting Systems. Tecnical Report CS-R9073, CWI, Amsterdam, to appear in Handbook of Logic in Computer Science, volume I.Google Scholar
  28. [28]
    R. Kowalski. Logic as a Database Language. In Proc. Advanced Seminar on Theoretical Issues of Databases, Cetrano, Italy, 1981.Google Scholar
  29. [29]
    G. Levi, C. Palamidessi, P. Bosco. E. Giovanetti and C. Moiso. A complete semantic characterization of K-LEAF, a logic language with partial functions. In Proc. 1987 IEEE Int’l sump, on Logic Programming pages 318-327. IEEE Computer Society Press, 1987.Google Scholar
  30. [30]
    J.W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, 1987. second edition.MATHCrossRefGoogle Scholar
  31. [31]
    J. Minker, (Ed.). Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann, Los Altos, Ca., 1988.Google Scholar
  32. [32]
    J.J. Moreno and M. Rodriguez-Artalejo. BABEL: A Functional and Logic Programming Language based on a constructor discipline and narrowing. In Proc. ALP89. volume 343 of LNCS, pages 223–232. Springer-Verlag, Berlin, 1988.Google Scholar
  33. [33]
    N. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, Berlin, 1982.MATHGoogle Scholar
  34. [34]
    A. Olivé. A comparison of the Operational and Deductive approaches to Conceptual Systems Modelling. In Proc. IFIP86, pages 91–96. North-Holland, Amsterdam, 1986.Google Scholar
  35. [35]
    G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus University, 1981.Google Scholar
  36. [36]
    M. J. Ramírez, M. Falaschi and G. Levi. Conditional Narrowing with Constructive Negation. In Proc. GULP’92, Milano, Italy, 1992.Google Scholar
  37. [37]
    A. Sernadas, C. Sernadas and H. D. Ehrich. Object-Oriented Specification of Databases: an algebraic approach. In Proc. 13th VLDB Conf., pages 107–116. Morgan Kaufmann, Los Altos, Ca., 1987.Google Scholar
  38. [38]
    J. H. Siekmann. Unification Theory. Journal of Symbolic Computation, 7: 207–274, 1989.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    P. Veloso, J. Castilho and A. Furtado. Systematic Derivation of Complementary Specifications. In Proc. 7th VLDB Conf., Cannes, 1981, pages 409-421. IEEE Computer Society Press, 1981.Google Scholar
  40. [40]
    P. Veloso and A. Furtado. Towards simpler and vet complete Formal specifications. Information systems: Theoretical and Formal aspects. North-Holland, Amsterdam, 1985.Google Scholar
  41. [41]
    D.H. Warren. Warplan: A system for Generating Plans. memo 76, Univ. of Edinburgh, 1974.Google Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • María Alpuente
    • 1
  • María José Ramírez
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations