Advertisement

An Algorithm for Selection Operator Propagation in Resolution Graph

  • A. Hameurlain
  • F. Morvan

Abstract

Data structures used to describe queries and rules systems strongly influence the optimization of the performances of deductive DBMS and more precisely evaluation methods for recursive queries.The scope of the optimization problem led to us study data structures derived from several research areas in the domain of deductive databases. From our results we propose a data structure called Resolution Graph, with a double objective : to maintain homogeneity with relational systems, and to help for the realization of the resolution and evaluation process. We also describe an algorithm which uses the Resolution Graph during the propagation of the selection operator. Comparing our Resolution Graph to other data structures and our algorithm to other methods of recursive queries optimization shows the strength of our method.

Keywords

System Graph Horn Clause Rule System Deductive Database Deduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Agrawall and H.V. Jagadish, “Efficient search in very large database,” Proc. of the 14th VLDB Conference, Los Angeles, California, p. 40, 1988.Google Scholar
  2. [2]
    F. Bancilhon and R. Ramakrishan, “An amateur’s introduction to recursive query processing strategies,” Proc. of ACM-SIGMOD Washington D.C., p. 16, 1986.Google Scholar
  3. [3]
    F. Bancilhon and R. Ramakrishan,“Performance Evaluation of Data Intensive Logic Programs,” Foundations of Deductive Databases and Logic Programming. Morgan Kaufman Publi., Los Altas, California, Minker Edit. p. 439, 1988.Google Scholar
  4. [4]
    P. Bazex and A. Hameurlain.“Evaluation optimisée de relations virtuelles par parcours de structures arborescentes,” Journées des Bases de Données aux bases de Connaissances“, Sophia-Antipolis, France, p. 265, 1987.Google Scholar
  5. [5]
    P. Bazex et al., “L’inférence dans les bases de données relationnlles: approche PROLOG / approche relationnelle”. lère Conf. Européenne sur les techniques et les application de l’intelligence artificielle en milieu industriel et de service, Paris, vol. 1, p. 11, 1989.Google Scholar
  6. [6]
    A. Colmerauer et al., “PROLOG, bases théoriques et développement actuels,” TSI, vol. 2, no. 4, p. 271, 1983.MATHGoogle Scholar
  7. [7]
    H. Farreny and M. Ghallab, “Eléments d’Intelligence Artificielle,”. Ed. Hermes, 1988.Google Scholar
  8. [8]
    G. Gardarin and E. Simon, “Les systèmes de gestion de bases de données déductives,” TSI, vol. 6, no. 5, p. 347, 1987.Google Scholar
  9. [9]
    H. Gallaire et al., “Logic and Databases: a deductive approach,” ACM Computing Surveys, vol. 16, no. 2, p. 15, 1984.MathSciNetCrossRefGoogle Scholar
  10. [10]
    H.J. Genrich, “Predicate / Transition Nets,” in Advances in Petri Nets’ 86. Springer-Verlag, 1987.Google Scholar
  11. [11]
    A. Hameurlain, “Optimization for recursive queries in relational Databases,” 12 th Intl. Information Technologies Conference. Sarajevo YU, vol. 2, p. 601, 1988.Google Scholar
  12. [12]
    A. Hameurlain et al., “Conception et réalisation d’un évaluateur de règles de déduction dans un environnement relationnel,” Convention Informatique Latine, Barcelona, p. 445, 1989.Google Scholar
  13. [13]
    A. Hameurlain and F. Morvan, “Deductive databases: Parallel Transitive Closure,” Intl. Conf. On Operations Research,Vienna, 1990, to appear in the DGOR Proceedings, Springer-Verlag.Google Scholar
  14. [14]
    L.J. Henschen and S.A. Naqvi, “On compiling queries in recursive first-order data bases”, Journal of the ACM., Vol. 31„ p. 47, 1984.Google Scholar
  15. [15]
    L.J. Henschen and C.S. Wu, “Answering Linear Recursive Queries in Cyclic Databases,” Proc. of Intl on Fifth Generation Computer System, ICOT,•JAPAN, p. 727, 1988.Google Scholar
  16. [16]
    Y.E. Ioannidis and R. Ramakrishan “Efficient Transitive Closure Algorithms,” Proc. of the 14th VLDB Conference, Los Angeles, California, p. 382, 1988.Google Scholar
  17. [17]
    M. Jarke and J.Koch, “Query Optimization in Database System,” ACM Computing Surveys, vol. 16, no. 2, p. 111, 1984.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    E.L. Lozinskii, “Evaluating Queries in Deductive Databases by Generating,” Proc. 9th Intl. Joint Conf. on Artificial Intelligence, Los Angeles, p. 173, 1985.Google Scholar
  19. [19]
    E.L. Lozinskii, “A Problem-Oriented Inferential Database System.” ACM trans. on Database Systems, vol. 11, no. 3, p. 323, 1986.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    M. Kifer and E.L. Lozinskii, “Filtering Data Flow in Deductive Databases,”Proc. of the Intl. Conf. on Database Theory, Lecture Notes in Computer Science, no. 243, Springer-Verlag, p. 186, 1986.Google Scholar
  21. [21]
    M. Kifer and E.L. Lozinskii, “Implementation Logic Programs as a Database System,” Proc. of 3th Intl. Conf. on Data Engineering, Los Angeles, 1987Google Scholar
  22. [22]
    R. Kowalski, “A Proof Procedure using connection graphs,” Journal of the ACM, vol. 22, no. 4, 1975.Google Scholar
  23. [23]
    C. DE Maindreville and E. Simon, “A Predicat Transition Net for Evaluation Queries Against Rules in a DBMS,” Abstract in Proc of 3th JBDA, Port-Camargue, France, p. 347, 1987.Google Scholar
  24. [24]
    C. DE Maindreville and E. Simon, “A Production Rule Based Approach to deductive Databases,” Proc. of 4th International Conference on Data Engineering, Los Angeles, p. 234, 1988.Google Scholar
  25. [25]
    C. DE Maindreville and E. Simon, “Modeling Non Deterministic Queries and Update In Deductive Databases,” Proc. of the 14th VLDB Conference, Los Angeles, California, p. 39, 1988.Google Scholar
  26. [26]
    D.P. Mckay and S.C. Shapiro, “Using Active Connection Graphs for Reasoning with Recursive Rules”, Intl. Joint Conf. on Artificial Intelligence, p. 368, 1981.Google Scholar
  27. [27]
    N.J. Nillson, “Principles of Artificial Intelligence”; Tioga Publishing company, 1980.Google Scholar
  28. [28]
    J. Rohmer et al.,“The alexandre method, A technique for the processing of recursive Axioms in Deductive Databases, ” New Generation Computing,vol. 4, no. 3, p. 273, 1986.MATHCrossRefGoogle Scholar
  29. [29]
    J.D. Ullman, “Implementation of logical query languages for data bases,” ACM Trans. Data Base Systems, vol. 10, no. 3, p. 289, 1985.MATHCrossRefGoogle Scholar
  30. [30]
    L. Vieille, “Recursive Axioms in Deductive Databases: The Query - Subquery Approch,” Proc. First Intl. Confrence on Expert Database Systems, Charleston, p. 179, 1986.Google Scholar
  31. [31]
    L. Vieille, “BD déductive: DEDGIN, un évaluateur de requêtes récursives,” Journées des Bases de Données aux bases de Connaissances, Sophia-Antipolis, France, p. 247, 1987.Google Scholar

Copyright information

© Springer-Verlag/Wien 1990

Authors and Affiliations

  • A. Hameurlain
    • 1
  • F. Morvan
    • 1
  1. 1.Lab. IRITUniversité Paul SabatierToulouse CédexFrance

Personalised recommendations