Advertisement

Computing with Groups and Their Character Tables

  • J. Neubüser
Part of the Computing Supplementa book series (COMPUTING, volume 4)

Abstract

In this survey an attempt is made to give some impression of the eapabilities of currently available programs for computations with finitely generated groups and their representations.

Keywords

Finite Group Conjugacy Class Permutation Group Cayley Graph Character Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aasman, M., Janißen, W., Lammers, H., Neubüser, J., Pahlings, H., Plesken, W.: The CAS System, User Manual (provisional version). RWTH Aachen: Lehrstuhl D f. Math., Mimeographed Rep., 83 p., 1981.Google Scholar
  2. [2]
    Aasman, M., Janißen, W., Lammers, H., Neubüser, J., Pahlings, H., Plesken, W.: Das CAS System, Handbuch (vorläufige Version). RWTH Aachen: Lehrstuhl D f. Math., Mimeographed Rep., 555 p., 1981.Google Scholar
  3. [3]
    Atkinson, M. D.: An Algorithm for Finding the Blocks of a Permutation Group. Math. Comput. 29, 911–913 (1975)CrossRefMATHMathSciNetGoogle Scholar
  4. [3a]
    Beetham, M. J., Campbell, C. M.: A Note on the Todd-Coxeter Coset Enumeration Algorithm. Proc. Edinburgh Math. Soc. (2) 20, 73–79 (1976).CrossRefMATHMathSciNetGoogle Scholar
  5. [4]
    Birkhoff, G., Hall, M., jr. (eds.): Computers in Algebra and Number Theory. (SIAM-AMS Proc. 4.) Providence, R. I.: Amer. Math. Soc. 1971.Google Scholar
  6. [5]
    Brott, C, Neubüser, J.: A Programme for the Calculation of Characters and Representations of Finite Groups. In: Proc. of the Conference on Computational Problems in Abstract Algebra, Oxford, 1967 (Leech, J., ed.), pp. 101–110. Pergamon Press 1970.Google Scholar
  7. [6]
    Butler, G.: The Schreier Algorithm for Matrix Groups. SYMSAC 1976, 167–170.Google Scholar
  8. [7]
    Butler, G.: Computational Approaches to Certain Problems in the Theory of Finite Groups. Ph.D. Thesis, Univ. of Sydney, 316 p., 2 appendices on microfiche, 1979.Google Scholar
  9. [8]
    Cannon, J. J.: Computers in Group Theory: A Survey. Commun. ACM 12, 3–12 (1969).CrossRefMATHMathSciNetGoogle Scholar
  10. Cannon, J. J.: Computing Local Structure of Large Finite Groups. In [4], 161–176.Google Scholar
  11. [10]
    Cannon, J. J.: Construction of Defming Relators for Finite Groups. Discrete Math. 5, 105–129 (1973).CrossRefMATHMathSciNetGoogle Scholar
  12. [11]
    Cannon, J. J.: A General Purpose Group Theory Program. In [46], 204–217.Google Scholar
  13. [12]
    Cannon, J. J.: A Draft Description of the Group Theory Language Cayley. SYMSAC 1976, 66–84.CrossRefGoogle Scholar
  14. [13]
    Cannon, J. J.: Effective Procedures for the Recognition of Primitive Groups. In [16], 487–493.Google Scholar
  15. [14]
    Cannon, J. J.: Software Tools for Group Theory. In [16], 495–502.Google Scholar
  16. [15]
    Cannon, J. J., Dimino, L. A., Havas, G., Watson, J. M.: Implementation and Analysis of the Todd-Coxeter Algorithm. Math. Comput. 27, 463–490 (1973).CrossRefMATHMathSciNetGoogle Scholar
  17. [16]
    Cooperstein, B., Mason, G. (eds.): The Santa Cruz Conference on Finite Groups. (Proc. Sympos. Pure Math. 37.) Providence, R. I.: Amer. Math. Soc. 1980.MATHGoogle Scholar
  18. [17]
    Dietze, A., Schaps, M.: Determining Subgroups of Given Finite Index in a Finitely Presented Group. Can. J. Math. 26, 769–782 (1974).CrossRefMATHMathSciNetGoogle Scholar
  19. [18]
    Dixon, J. D.: High Speed Computation of Group Characters. Numer. Math. 10, 446–450 (1967).CrossRefMATHMathSciNetGoogle Scholar
  20. [19]
    Dixon, J. D.: Computing Irreducible Representations of Groups. Math. Comput. 24, 707–712 (1970).CrossRefGoogle Scholar
  21. [20]
    Felsch, V.: A Machine Independent Implementation of a Collection Algorithm for the Multiplication of Group Elements. SYMSAC 1976, 159–166.Google Scholar
  22. [21]
    Felsch, V.: A Bibliography on the Use of Computers in Group Theory and Related Topics: Algorithms, Implementations, and Applications. Kept current and obtainable from Lehrstuhl D für Mathematik, RWTH Aachen, D-5100 Aachen, Federal Republic of Germany.Google Scholar
  23. [22]
    Felsch, V., Neubüser, J.: An Algorithm for the Computation of Conjugacy Classes and Centralizers in p-Groups. EUROSAM 1979, 452–465.Google Scholar
  24. [23]
    Flodmark, S., Jansson, P.-O.: Irreducible Representations of Finite Groups (Proc. lOth Internat. Coli, on Group Theoret. Methods in Phys.). Physica114 A, 485–492 (1982).Google Scholar
  25. [24]
    Frame, J. S.: Recursive Computation of Tensor Power Components. Bayreuther Math. Schriften Heft 10, 153–159 (1982).MathSciNetGoogle Scholar
  26. [25]
    Gabriel, J. R.: Numerical Methods for Reduction of Group Representations. SYMSAM 1971, 180–182.Google Scholar
  27. [26]
    Havas, G.: A Reidemeister-Schreier Program. In [46], 347–356.Google Scholar
  28. [27]
    Havas, G., Newman, M. F.: Application of Computers to Questions like Those of Burnside. In: Burnside Groups Proc., Bielefeld, Germany: 1977 (Mennicke, J. L., ed.). Lecture Notes in Mathematics, Vol. 806, pp. 211–230. Berlin-Heidelberg-New York: Springer 1980.Google Scholar
  29. [28]
    Havas, G., Nicholson, T.: Collection. SYMSAC 1976, 9–14.Google Scholar
  30. [29]
    Havas, G., Richardson, J. S., Sterling, L. S.: The Last of the Fibonacci Groups. Proc. Roy. Soc. (Edinburgh) A83, 199–203 (1979).CrossRefMathSciNetGoogle Scholar
  31. [30]
    Havas, G., Sterling, L. S.: Integer Matrices and Abelian Groups. EUROSAM 1979, 431–451.Google Scholar
  32. [31]
    Hunt, D. C.: A Computer-Based Atlas of Finite Simple Groups. In [16], 507–510.Google Scholar
  33. [32]
    Huppert, B.: Endliche Gruppen I. Berlin-Heidelberg-New York: Springer 1967.CrossRefMATHGoogle Scholar
  34. [33]
    Isaacs, I. M.: Character Theory of Finite Groups. New York-San Francisco-London: Academic Press 1976.MATHGoogle Scholar
  35. [34]
    Johnson, D. L.: Topics in the Theory of Group Presentations. London Math. Soc. Lect. Note Series, Vol. 42. Cambridge: Cambridge University Press 1980.CrossRefMATHGoogle Scholar
  36. [35]
    Leech, J.: Computer Proof of Relations in Groups. In: Topics in Group Theory and Comput. (Proc., Galway, 1973), (Curran, M. P. J., ed.), pp. 38–61. London-New York-San Francisco: Academic Press 1977.Google Scholar
  37. [36]
    Leon, J. S.: On an Algorithm for Finding a Base and a Strong Generating Set for a Group Given by Generating Permutations. Math. Comput. 35, 941–974 (1980).CrossRefMATHMathSciNetGoogle Scholar
  38. [37]
    Leon, J. S.: Finding the Order of a Permutation Group. In [16], 511–517.Google Scholar
  39. [38]
    Leon, J. S., Pless, V.: CAMAC 1979. EUROSAM 1979, 249–257.Google Scholar
  40. [39]
    Loos, R.: Term Reduction Systems and Algebraic Algorithms. Informatik Fachberichte 47, 214–234 (1981).Google Scholar
  41. [40]
    Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. New York-London-Sydney: Interscience 1966.MATHGoogle Scholar
  42. [41]
    McLain, D. H.: An Algorithm for Determining Defining Relations of a Subgroup. Glasg. Math. J. 18, 51–56 (1977).CrossRefMATHMathSciNetGoogle Scholar
  43. [42]
    Neubüser, J.: Investigations of Groups on Computers. In: Proc. of the Conference on Computational Problems in Abstract Algebra, Oxford, 1967 (Leech, J., ed.), pp. 1–19. Pergamon Press 1970.Google Scholar
  44. [43]
    Neubüser, J.: Computing Moderately Large Groups: Some Methods and Applications. In [4], 183–190.Google Scholar
  45. [44]
    Neubüser, J.: Some Computational Methods in Group Theory. In: 3rd Internat. Coli. Adv. Comput. Methods in Theoret. Phys., B-II-1-B-II-35. Marseille: Centre de Physique Theorique CNRS 1973.Google Scholar
  46. [45]
    Neubüser, J.: An Elementary Introduetion to Coset Table Methods in Computational Group Theory. Groups-St. Andrews 1981 (Campbell, C. M., Robertson, E. F., eds.). Cambridge Univ. Press 1982.Google Scholar
  47. [46]
    Newman, M. F. (ed.): Proc. 2nd Internat. Conf. on the Theory of Groups (Canberra: Austral. Nat. Univ. 1973). Lecture Notes in Mathematics, Vol. 372. Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  48. [47]
    Newman, M. F.: Calculating Presentations for Certain Kinds of Quotient Groups. SYMSAC 1976, 2–8.Google Scholar
  49. [48]
    Newman, M. F. (ed.): Topics in Algebra. (Canberra: Proc. 1978). Lecture Notes in Mathematics, Vol. 697. Berlin-Heidelberg-New York: Springer 1978.Google Scholar
  50. [49]
    Sandlöbes, G.: Perfect Groups of Order Less than 104. Commun. Algebra 9, 477–490 (1981).CrossRefMATHGoogle Scholar
  51. [50]
    Sims, C. C.: Determining the Conjugacy Classes of a Permutation Group. In [4], 191–195.Google Scholar
  52. [51]
    Sims, C. C.: Computation with Permutation Groups. SYMSAM 1971, 23–28.Google Scholar
  53. [52]
    Sims, C. C.: The Role of Algorithms in the Teaching of Algebra. In [48], 95–107.Google Scholar
  54. [53]
    Sims, C. C: Some Group-Theoretic Algorithms. In [48], 108–104.Google Scholar
  55. [54]
    Sims, C. C.: Group-Theoretic Algorithms, a Survey. Proc. Internat. Congress of Mathematicians 2 (Helsinki 1978). (Lehto, O., ed.), pp. 979–985. Helsinki: Acad. Sci. Fennica 1980.Google Scholar
  56. [55]
    Sims, C. C.: Computational Group Theory. Manuscript, distributed at the Amer. Math. Soc. Short Course on Comput. Algebra-Symb. Math. Comput., Ann Arbor, Michigan, 15 p., 1980.Google Scholar
  57. [56]
    Stanley, R. P.: Invariants of Finite Groups and Their Applications to Combinatorics. Bull. AMS 1, 475–511 (1979).CrossRefMATHMathSciNetGoogle Scholar
  58. [57]
    Thackray, J. G.: Reduction of Modules in Non-Zero Characteristics. Lect. Notes, distributed at the Amer. Math. Soc. Summer Inst, on Finite Group Theory, 4 p., Santa Cruz: Univ. of Calif. 1979Google Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • J. Neubüser
    • 1
  1. 1.Lehrstuhl D für MathematikRheinisch-Westfälische Technische HochschuleAachenFederal Republic of Germany

Personalised recommendations