Advertisement

Computer Algebra Systems

  • J. A. van Hulzen
  • J. Calmet
Part of the Computing Supplementa book series (COMPUTING, volume 4)

Abstract

A survey is given of Computer algebra systems, with emphasis on design and implementation aspects, by presenting a review of the development of ideas and methods in a historical perspective, by us considered as instrumental for a better understanding of the rich diversity of now available facilities. We first indicate which classes of mathematical expressions can be stated and manipulated in different systems before we touch on different general aspects of usage, design and implementation, such as language design, encoding, dynamic storage allocation and a symbolic-numeric interface. Then we discuss polynomial and rational function systems, by describing ALTRAN and SAC-2. This is followed by a comparison of some of the features of MATHLAB-68, SYMBAL and FORMAC, which are pretended general purpose systems. Before considering giants (MACSYMA and SCRATCHPAD) and gnomes (muMATH-79), we give the main characteristics of TRIGMAN, CAMAL and REDUCE, systems we tend to consider as grown out special purpose facilities. Finally we mention some modern algebra systems (CAYLEY and CAMAC-79) in relation to recent proposals for a language for computational algebra. We conclude by stipulating the importance of documentation. Throughout this discussion related systems and facilities will be mentioned. Noticeable are ALKAHEST II, ALP AK, ANALITIK, ASHMEDAI, NETFORM, PM, SAC-1, SCHOONSCHIP, SHEEP, SMP, SYCOPHANTE and TAYLOR.

Keywords

Computer Algebra Computer Algebra System Garbage Collection Reference Count Computational Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aman, J., Karlhede, H.: An Algorithmic Classification of Geometries in General Relativity. SYMSAC 1981, 79–84.Google Scholar
  2. [2]
    Arnon, D. S.: Algorithms for the Geometry of Semi-Algebraic Sets. Ph.D. Thesis, Univ. of Wisconsin, Madison, 1981.Google Scholar
  3. [3]
    Bahr, K. A.: Utilizing the FORMAC Novelties. SIGSAM 9/1, 21–24 (1975).CrossRefGoogle Scholar
  4. [4]
    Bahr, K. A.: Basic Algorithms in FORMAC: Design and Verification. SYMSAC 1976, 189–197.Google Scholar
  5. [5]
    Bahr, K. A.: FORMAC 73 User’s Manual. Darmstadt: GMD/IFV.Google Scholar
  6. [6]
    Bahr, K. A., Smit, J.: Tuning an Algebraic Manipulation System through Measurements. EUROSAM 1974, 17–23.Google Scholar
  7. [7]
    Barton, D.: A New Approach to the Lunar Theory. Ph.D. Thesis, University of Cambridge, 1966.Google Scholar
  8. [8]
    Barton, D., Bourne, S. R., Fitch, J. P.: An Algebra System. Comput. J. 13, 32–39 (1970).MATHCrossRefGoogle Scholar
  9. [9]
    Barton, D., Bourne, S. R., Horton, J. R.: The Structure of the Cambridge Algebra System. Comput. J. 13, 243–247 (1970).MATHCrossRefGoogle Scholar
  10. [10]
    Barton, D., Fitch, J. P.: General Relativity and the Application of Algebraic Manipulation Systems. SYMSAM 1971, 542–547.Google Scholar
  11. [11]
    Barton, D., Fitch, J. P.: A Review of Algebraic Manipulation Programs and Their Application. Comput. J. 15, 362–381 (1972).MATHCrossRefGoogle Scholar
  12. [12]
    Barton, D., Willers, L. M., Zahar, R. V. M.: The Automatic Solution of Systems of Ordinary Differential Equations by the Method of Taylor Series. In: Proceedings Mathematical Software (Rice, J., ed.), pp. 369–390. New York: Academic Press 1971.Google Scholar
  13. [13]
    Bergman, M.: The SYCOPHANTE System. CALSYF 1, 1981 (unpublished Bull.). (Bergman, M., Calmet, J., eds.)Google Scholar
  14. [14]
    Bourne, S. R.: Automatic Algebraic Manipulation and its Application to the Lunar Theory. Ph.D. Thesis, Univ. of Cambridge, 1970.Google Scholar
  15. [15]
    Bourne, S. R., Horton, J. R.: The Design of the Cambridge Algebra System. SYMSAM 1971, 134–143.Google Scholar
  16. [16]
    Brown, W. S.: An Operating Environment for Dynamic-Recursive Computer Programming Systems. Commun. ACM 8, 371–377 (1965).CrossRefGoogle Scholar
  17. [17]
    Brown, W. S.: On Computing with Factored Rational Expressions. EUROSAM 1974, 26–34.Google Scholar
  18. [18]
    Brown, W. S.: ALTRAN User’s Manual, 4th ed. Murray Hill, N. J.: Bell Laboratories 1977.Google Scholar
  19. [19]
    Brown, W. S., Hearn, A. C.: Application of Symbolic Mathematical Computations. Comp. Phys. Comm. 17, 207–215 (1979).CrossRefGoogle Scholar
  20. [20]
    Brown, W. S., Tague, B. A., Hyde, J. P.: The ALPAK System for Numerical Algebra on a Digital Computer. Bell Syst. Tech. J. 42, 2081–2119 (1963); 43, 785–804 (1964); 43, 1547–1562 (1964).Google Scholar
  21. [21]
    Calmet, J.: A User’s Presentation of SAC2/ALDES. CALSYF 1, 1981 (unpublished Bull.). (Bergman, M., Calmet, J., eds.)Google Scholar
  22. [22]
    Campbell, J.: Problem #2 — The Y 2n Functions. SIGSAM Bull. 22, 8–9 (1972).CrossRefGoogle Scholar
  23. [23]
    Cannon, J. J.: A Draft Description of the Group Theory Language CAYLEY. SYMSAC 1976, 66–84.Google Scholar
  24. [24]
    Cannon, J. J.: The Basis of a Computer System for Modern Algebra. SYMSAC 1981, 1–5.Google Scholar
  25. [25]
    Caviness, B. F.: SAM Course Outlines. SIGSAM Bull. 8/4, 15–25 (1974).Google Scholar
  26. [26]
    Caviness, B. F., Collins, G. E.: Symbolic Mathematical Computation in a Ph.D. Computer Science Program. SIGSAM Bull. 23, 25–28 (1972).CrossRefGoogle Scholar
  27. [27]
    Christensen, C.: On the Implementation of AMBIT, a Language for Symbol Manipulation. Commun. ACM 9, 570–573 (1966).CrossRefGoogle Scholar
  28. [28]
    Christensen, C.: An Introduction to AMBIT/L, a Diagrammatic Language for Listprocessing. SYMSAM 1971, 248–260.Google Scholar
  29. [29]
    Christensen, C., Karr, M.: IAM, a System for Interactive Algebraic Manipulation. SYMSAM 1971, 115–127.Google Scholar
  30. [30]
    Cole, C. A., Wolfram, S.: SMP-A Symbolic Manipulation Program. SYMSAC 1981, 20–22.Google Scholar
  31. [31]
    Cole, C. A., Wolfram, S., et al.: SMP-Handbook, Version 1. Cal. Inst, of Techn. 1981.Google Scholar
  32. [32]
    Collins, G. E.: PM, a System for Polynomial Manipulation. Commun. ACM 9, 578–589 (1966).MATHCrossRefGoogle Scholar
  33. [33]
    Collins, G. E.: The SAC-1 System: An Introduction and Survey. SYMSAM 1971, 144–152.Google Scholar
  34. [34]
    Collins, G. E.: SAC-1 Availability Notice. SIGSAM Bull. 10/2, 14–15 (1976).Google Scholar
  35. [35]
    Collins, G. E.: ALDES and SAC-2 Now Available. SIGSAM Bull. 14/2, 19 (1980).Google Scholar
  36. [36]
    Davenport, J.: Effective Mathematics: The Computer Algebra View Point. In: Constructive Mathematics (Richman, F., ed.). Lecture Notes in Mathematics, Vol. 873, pp. 31–43. Berlin-Heidelberg-New York: Springer 1981.CrossRefGoogle Scholar
  37. [37]
    Davenport, J., Jenks, R. D.: MODLISP. SIGSAM Bull. 15/1, 11–20 (1981).CrossRefGoogle Scholar
  38. [38]
    Drouffe, J. M.: AMP User’s Manual, Version 6. Gif-sur-Yvette, CEN Saclay 1981.Google Scholar
  39. [39]
    Engeli, M. E.: A Language and Liststructure for an Algebraic Manipulation System. IFIP 1966, 103–115.Google Scholar
  40. [40]
    Engeli, M. E.: Formula Manipulation — the User’s Point of View. In: Advances in Information Systems Science (Tou, J. T., ed.), Vol. 1, pp. 117–171. New York: Plenum Press 1969.Google Scholar
  41. [41]
    Engeli, M. E.: An Enhanced SYMBAL System. SIGSAM Bull. 9/4, 21–29 (1975).CrossRefGoogle Scholar
  42. [42]
    Engelman, C.: MATHLAB: A Program for On-Line Machine Assistance in Symbolic Computations. Spartan Books 1, 413–421. Washington, D. C.: 1965.Google Scholar
  43. [43]
    Engelman, C.: MATHLAB-68. Proc. IFIP 68, pp. 462–467. Amsterdam: North-Holland 1969.Google Scholar
  44. [44]
    Engelman, C.: The Legacy of MATHLAB-68. SYMSAM 1971, 29–41.Google Scholar
  45. [45]
    Estabrook, F. B.: Differential Geometry as a Tool for Applied Mathematics. Proc. Scheveningen Conf. (Martini, R., ed.). Lecture Notes in Mathematics, Vol. 810, pp. 1–22. Berlin-Heidelberg-New York: Springer 1980.Google Scholar
  46. [46]
    Estabrook, F. B., Wahlquist, H. D.: Prolongation Structures, Connection Theory and Bäcklund Transformation. In: Non Linear Evolution Equations Solvable by the Spectral Transform (Calogero, F., ed.). Research Notes Mathematics, Vol. 26, pp. 64–83. San Francisco-London- Melbourne: Pitman 1978.Google Scholar
  47. [47]
    Fateman, R. J.: The MACSYMA “Big Floating-Point” Arithmetic System. SYMSAC 1976, 209–213.Google Scholar
  48. [48]
    Feldman, S. I.: A Brief Description of ALTRAN. SIGSAM Bull. 9/4, 12–20 (1975).CrossRefGoogle Scholar
  49. [49]
    Feldman, S. I., Ho, J.: A Rational Evaluation Package. Murray Hill, N. J.: Bell Lab.’s C. S. Tech. Report 34 (1975).Google Scholar
  50. [50]
    Fenichel, J.: An On-Line System for Algebraic Manipulation, Ph.D. Thesis, Harvard Univ. Cambridge, Mass., 1966.Google Scholar
  51. [51]
    Fitch, J. P.: An Algebraic Manipulator. Ph.D. Thesis, Univ. of Cambridge, 1971.Google Scholar
  52. [52]
    Fitch, J. P.: Course Notes, SIGSAM 9/3, 4–8 (1975).Google Scholar
  53. [53]
    Fitch, J. P.: CAMAL User’s Manual. Univ. of Cambridge, Comput. Lab., 1975.Google Scholar
  54. [54]
    Fitch, J. P.: The Cambridge Algebra System — An Overview. Proc. SEAS Anniversary Meeting, Dublin 1975.Google Scholar
  55. [55]
    Fitch, J. P.: Mechanizing the Solution of Perturbation Problems. MAXIMIN 1977, 93–98.Google Scholar
  56. [56]
    Fitch, J. P.: The Application of Symbolic Algebra in Physics — A Case of Creeping Flow. EUROSAM 1979, 30–41.Google Scholar
  57. [57]
    Fitch, J. P.: User Based Integration Software. SYMSAC 1981, 245–248.Google Scholar
  58. [58]
    Fitch, J. P., Norman, A. C., Moore, M. A.: The Automatic Derivation of Periodic Solutions to a Class of Weakly Nonlinear Differential Equations. SYMSAC 1981, 239–244.Google Scholar
  59. [59]
    Foderaro, J. K., Fateman, R. J.: Characterization of VAX MACSYMA. SYMSAC 1981, 14–19.Google Scholar
  60. [60]
    Frick, I.: The Computer Algebra System SHEEP, What It Can and Cannot Do in General Relativity. Univ. of Stockholm: USIP Report 77-14, 1977.Google Scholar
  61. [61]
    Frick, I.: SHEEP User’s Manual. Univ. of Stockholm 1977.Google Scholar
  62. [62]
    Gawlik, H. J.: MIRA. SIGSAM Bull. 26, 28–32 (1973).Google Scholar
  63. [63]
    Gawlik, H. J.: The Further Development of MIRA. SIGSAM Bull. 11/2, 22–28 (1977).CrossRefGoogle Scholar
  64. [64]
    Glushkov, V. M., et al.: ANALITIK-74. Kibernetika 5, 114–147 (1978) (in Russian).Google Scholar
  65. [65]
    Gragert, P.: Algebraic Operator, a Powerful Feature of REDUCE and Its Application in Non Commutative Algebras (Abstract). SIGSAM Bull. 14/4, 18 (1980).Google Scholar
  66. [66]
    Gragert, P.: Symbolic Computations in Prolongation Theory. Ph.D. Thesis, Twente Univ. of Technology, 1981.Google Scholar
  67. [67]
    Griesmer, J. H.: William A. Martin, Some Personal Reflections. SIGSAM Bull. 15/1, 1 (1981).Google Scholar
  68. [68]
    Griesmer, J. H., Jenks, R. D.: SCRATCHPAD/1, an Interactive Facility for Symbolic Mathematics. SYMSAM 1971, 42–58.Google Scholar
  69. [69]
    Griesmer, J. H., Jenks, R. D., Yun, D. Y. Y.: SCRATCHPAD User’s Manual. Yorktown Heights: IBM Research, Report RA 70, 1975.Google Scholar
  70. [70]
    Griesmer, J. H., Jenks, R. D., Yun, D. Y. Y.: A Taxonomy for Algebraic Computation. SIGSAM Bull. 12/1, 25–28 (1978).CrossRefGoogle Scholar
  71. [71]
    Griss, M. L.: The Definition and Use of Datastructures in REDUCE. SYMSAC 1976, 53–59.Google Scholar
  72. [72]
    Gustavson, F. G.: On Constructing Formal Integrals of a Hamiltonian System Near an Equilibrium Point. Am. Astronomial Society Space Flight Mechanics Specialist Conf. Univ. of Denver: 1966.Google Scholar
  73. [73]
    Hall, A. D.: The ALTRAN System for Rational Function Manipulation — A Survey. SYMSAM 1971, 153–157, and Commun. ACM 14, 517–521 (1971).Google Scholar
  74. [74]
    Hall, A. D.: ALTRAN Installation and Maintenance. Murray Hill, N. J.: Bell Lab.’s 1972.Google Scholar
  75. [75]
    Hall, A. D. Factored Rational Expressions in ALTRAN. EUROSAM 1974, 35–45.Google Scholar
  76. [76]
    Hartt, K.: Some Analytic Procedures for Computers and their Applications to a Class of Multidimensional Integrals. J. ACM 4, 416–421 (1964).MathSciNetCrossRefGoogle Scholar
  77. [77]
    Hearn, A. C.: Computation of Algebraic Properties of Elementary Particle Reactions Using a Digital Computer. Commun. ACM 9, 573–577 (1966).MATHCrossRefGoogle Scholar
  78. [78]
    Hearn, A. C.: REDUCE: A User Oriented Interactive System for Algebraic Simplification. In: Interactive Systems for Experimental Applied Mathematics (Klerer, M., Reinfeldt, J., eds.), pp. 79–90. New York-London: Academic Press 1968.Google Scholar
  79. [79]
    Hearn, A. C.: The Problem of Substitution. Proc. of the 1968 Summer Inst, on Symb. Math. Comp. (Tobey, R. G., ed.), pp. 3–20. Cambridge, Mass.: IBM 1969.Google Scholar
  80. [80]
    Hearn, A. C.: Applications of Symbol Manipulation in Theoretical Physics. SYMSAM 1971, 17–21 and Common. ACM 14, 511–516 (1971).Google Scholar
  81. [81]
    Hearn, A. C.: REDUCE 2: A System and Language for Algebraic Manipulation. SYMSAM 1971, 128–133.Google Scholar
  82. [82]
    Hearn, A. C.: REDUCE User’s Manual. Univ. of Utah: Report UCP-19, 1973.Google Scholar
  83. [83]
    Hearn, A. C.: A New REDUCE Model for Algebraic Simplification. SYMSAC 1976, 46–52.Google Scholar
  84. [84]
    Hearn, A. C.: An Improved Factored Polynomial Representation, Proc. Hawaii Int. Conf. System Sci. 1977, 155.Google Scholar
  85. [85]
    Hearn, A. C.: Non Modular Computation of Polynomial GCDs Using Trial Division. EUROSAM 1979, 227–239.Google Scholar
  86. [86]
    Hiemstra, B.: A Pre-Editor for CAMAL. SIGSAM Bull. 9/2, 30–34 (1975).Google Scholar
  87. [87]
    Hörnfeldt, L.: A System for Automatic Generation of Tensor Algorithms and Indicial Tensor Calculus, Including Substitution of Sums. EUROSAM 1979, 279–290.Google Scholar
  88. [88]
    Husberg, N., Seppänen, J.: ANALITIK: Principle Features of the Language and Its Implementation. EUROSAM 1974, 24–25.Google Scholar
  89. [89]
    IBM: LISP/370, Program Description/Operations Manual. Doc. SH 20–2076-0. White Plains, N.Y.: IBM 1978.Google Scholar
  90. [90]
    Jefferys, W. H.: FORTRAN-Based Listprocessor for Poisson-Series. Celest. Mech. 2, 474–480 (1970).CrossRefGoogle Scholar
  91. [91]
    Jefferys, W. H.: Automated Algebraic Manipulation in Celestial Mechanics. SYMSAM 1971, 328–331, and Commun. ACM 14, 538–541 (1971).Google Scholar
  92. [92]
    Jefferys, W. H.: A Precompiler for the Formula Manipulation System TRIGMAN. Celest. Mech. 6, 117–124 (1972).CrossRefGoogle Scholar
  93. [93]
    Jenks, R. D.: META/LISP: An Interactive Translator Writing System. IBM Research Rep. RC 2968. Yorktown Heigths, N.Y.: 1970.Google Scholar
  94. [94]
    Jenks, R. D.: META/PLUS: The Syntax Extension Facility for SCRATCHPAD. IFIP 1971, Booklet TA-3, 61–63. Amsterdam: North-Holland 1971.Google Scholar
  95. [95]
    Jenks, R. D.: The SCRATCHPAD-Language. SIGSAM Bull. 8/2, 16–26 (1974).Google Scholar
  96. [96]
    Jenks, R. D.: Course Outline, Yale University, New Häven. SIGSAM Bull. 9/3, 9–10 (1975).CrossRefGoogle Scholar
  97. [97]
    Jenks, R. D.: Reflections of a Language Design. SIGSAM Bull. 13/1, 16–26 (1979).MATHCrossRefGoogle Scholar
  98. [98]
    Jenks, R. D.: MODLISP-An Introduction. EUROSAM 1979, 466–480.Google Scholar
  99. [99]
    Jenks, R. D., Trager, B. M.: A Language for Computational Algebra. SYMSAC 1981, 6–13.Google Scholar
  100. [100]
    Kahrimanian, H. G.: Analytic Differentiation by a Digital Computer. MA Thesis, Temple Univ. Phil., PA., 1953.Google Scholar
  101. [101]
    Kanada, Y., Sasaki, T.: LISP Based “Big-Float” System is Not Slow. SIGSAM Bull. 15/2, 13–19 (1981).MathSciNetCrossRefGoogle Scholar
  102. [102]
    Kanoui, H., Bergman, M.: Generalized Substitutions. MAXIMIN 1977, 44–55.Google Scholar
  103. [103]
    Kersten, P. H. M.: The Computation of the Infinitesimal Symmetries for Vacuum Maxwell Equations and Extended Vacuum Maxwell Equations. Twente University of Technology: TW memorandum 365 (1981).Google Scholar
  104. [104]
    Korpela, J.: General Characteristics of the ANALITIK Language. SIGSAM Bull. 10/3, 30–48 (1976).CrossRefGoogle Scholar
  105. [105]
    Korpela, J.: On the MIR-Series of Computers and Their Utilization for Analytic Calculations. MAXIMIN 1977, 80–91.Google Scholar
  106. [106]
    Korsvold, K.: An On-Line Algebraic Simplify Program. Stanford Univ.: Art. Int. Project Memorandum 37 (1965) and Commun. ACM 9, 553 (1966).Google Scholar
  107. [107]
    Kulisch, U. W., Miranker, W. L.: Computer Arithmetic in Theory and Practice. New York-London: Academic Press 1981.MATHGoogle Scholar
  108. [108]
    Kung, H. T.: Use of VLSI in Algebraic Computation. SYMSAC 1981, 218–222.CrossRefGoogle Scholar
  109. [109]
    Lanam, D. H.: An Algebraic Front-End for the Production and Use of Numerical Programs. SYMSAC 1981, 223–227.Google Scholar
  110. [110]
    Leon, J. S., Pless, V.: CAMAC 79. EUROSAM 1979, 249–257.Google Scholar
  111. [111]
    Levine, M. J., Roskies, R.: ASHMEDAI and a Large Algebraic Problem. SYMSAC 1976, 359–364.Google Scholar
  112. [112]
    Levine, M. J., Roskies, R.: ASHMEDAI. MAXIMIN 1977, 70–92.Google Scholar
  113. [113]
    Loos, R.: Algebraic Algorithm Descriptions as Programs. SIGSAM Bull. 23, 16–24 (1972).CrossRefGoogle Scholar
  114. [114]
    Loos, R.: Toward a Formal Implementation of Computer Algebra. EUROSAM 1974, 1–8.Google Scholar
  115. [115]
    Loos, R.: The Algorithmic Description Language ALDES (Report). SIGSAM Bull. 10/1, 15–39 (1976).Google Scholar
  116. [116]
    Manove, M., Bloom, S., Engelman, C.: Rational Functions in MATHLAB. IFIP 1966, 86–102.Google Scholar
  117. [117]
    Marti, J., et al.: Standard LISP Report. SIGSAM Bull. 14/1, 23–43 (1980).MATHCrossRefGoogle Scholar
  118. [118]
    Martin, W. A.: Symbolic Mathematical Laboratory. Ph.D. Thesis, M.I.T., Cambridge, Mass., Report MAC-TR-36, 1967.Google Scholar
  119. [119]
    Martin, W. A.: Computer Input/Output of Mathematical Expressions. SYMSAM 1971, 78–89.Google Scholar
  120. [120]
    Martin, W. A., Fateman, R. J.: The MACSYMA-System. SYMSAM 1971, 59–75.Google Scholar
  121. [121]
    MATHLAB Group: MACSYMA Reference Manual. M.I.T., Cambridge, Mass.: Lab. of Comput. Sci. 1977.Google Scholar
  122. [122]
    Millen, J. K.: CHARIBDIS: A LISP Program to Display Mathematical Expressions on Type Writer Like Devices. In: Interactive Systems for Experimental Applied Mathematics (Klerer, M., Reinfelds, J., eds.), pp. 155–163. New York-London: Academic Press 1968.Google Scholar
  123. [123]
    Moler, C. B.: Semi-Symbolic Methods in Partial Differential Equations. SYMSAM 1971, 349–351.Google Scholar
  124. [124]
    Moore, P. M. A., Norman, A. C.: Implementing a Polynomial Factorization and GCD Package. SYMSAC 1981, 109–116.Google Scholar
  125. [125]
    Moses, J.: Symbolic Integration. Ph.D. Thesis, Math. Dept., M.I.T., Cambridge, Mass., 1967.Google Scholar
  126. [126]
    Moses, J.: Symbolic Integration: The Stormy Decade. SYMSAM 1971, 427–440, and Commun. ACM 14, 548–560 (1971).Google Scholar
  127. [127]
    Moses, J.: Algebraic Simplification: A Guide for the Perplexed. SYMSAM 1971, 282–304, and Commun. ACM 14, 572–537 (1971).Google Scholar
  128. [128]
    Moses, J.: MACSYMA — the Fifth Year. EUROSAM 1974, 105–110.Google Scholar
  129. [129]
    Moses, J.: Algebraic Computation for the Masses. SIGSAM Bull. 15/3, 4–8 (1981).MathSciNetGoogle Scholar
  130. [130]
    Neidleman, L. D.: A User Examination of the Formula Manipulation Language SYMBAL. SIGSAM Bull. 20, 8–24 (1971).CrossRefGoogle Scholar
  131. [131]
    Neubüser, J.: Some Remarks on a Proposed Taxonomy for Algebraic Computation. SIGSAM Bull. 14/1, 19–20 (1980).CrossRefGoogle Scholar
  132. [132]
    Ng, E. W.: Symbolic-Numeric Interface: A Review. EUROSAM 1979, 330–345.Google Scholar
  133. [133]
    Nolan, J.: Analytic Differentiation on a Digital Computer. MA. Thesis, Math. Dept., M.I.T., Cambridge, Mass., 1953.Google Scholar
  134. [134]
    Norman, A. C.: TAYLOR’s User’s Manual. Univ. of Cambridge: Computing Service 1973.Google Scholar
  135. [135]
    Norman, A. C.: Symbolic and Algebraic Modes in REDUCE. REDUCE-Newsletter 3, 5–9. Univ. of Utah: Symb. Comput. Group. 1978.Google Scholar
  136. [136]
    Pavelle, R., Rothstein, M., Fitch, J.: Computer Algebra (Preprint). To appear in Scientific American.Google Scholar
  137. [137]
    Perlis, A. J., Iturrigia, R., Standish, T. A.: A Defmition of Formula ALGOL. Carnegie-Mellon Univ., Pittsburg: Computer Center 1966.Google Scholar
  138. [138]
    Pinkert, R. J.: SAC-1 Variable Floating Point Arithmetic. Proc. ACM 1975, 274–276.Google Scholar
  139. [139]
    Pless, V.: CAMAC. SYMSAC 1976, 171–176.Google Scholar
  140. [140]
    Rall, L. B.: Automatic Differentiation: Techniques and Applications. Lecture Notes in Computer Science, Vol. 120. Berlin-Heidelberg-New York: Springer 1981.MATHGoogle Scholar
  141. [141]
    Rich, A., Stoutemyer, D. R.: Capabilities of the muMATH-79 Computer Algebra System for the INTEL-8080 Microprocessor. EUROSAM 1979, 241–248.Google Scholar
  142. [142]
    Richards, M.: The BCPL Programming Manual. Univ. of Cambridge: Comput. Lab. 1973.Google Scholar
  143. [143]
    Rochon, A. R., Strubbe, H.: Solution of SIGSAM Problem No. 5 Using SCHOONSCHIP. SIGSAM Bull. 9/4, 30–38 (1975).CrossRefGoogle Scholar
  144. [144]
    Rom, A. R.: Manipulation of Algebraic Expressions. Commun. ACM 4, 396–398 (1961).MATHMathSciNetCrossRefGoogle Scholar
  145. [145]
    Sammet, J. E.: Survey of Formula Manipulation. Commun. ACM 9, 555–569 (1966).MATHMathSciNetCrossRefGoogle Scholar
  146. [146]
    Sammet, J. E.: Programming Languages: History and Fundamentals. New York: Prentice-Hall 1969.MATHGoogle Scholar
  147. [147]
    Sasaki, T.: An Arbitrary Precision Real Arithmetic Package in REDUCE. EUROSAM 1979, 358–368.Google Scholar
  148. [148]
    Siret, Y.: A Conversational System for Engineering Assistance: ALADIN. SYMSAM 1971, 90–99.Google Scholar
  149. [149]
    Slagle, J. R.: A Heuristic Program that Solves Symbolic Integration Problems in Freshman Calculus. J. ACM 10, 507–520 (1963).MATHCrossRefGoogle Scholar
  150. [150]
    Smit, J.: Introduction to NETFORM. SIGSAM Bull. 8/2, 31–36 (1974).MathSciNetCrossRefGoogle Scholar
  151. [151]
    Smit, J.: New Recursive Minor Expansion Algorithms, a Presentation in a Comparative Context. EUROSAM 1979, 74–87.Google Scholar
  152. [152]
    Smit, J.: A Cancellation Free Algorithm, with Factoring Capabilities, for the Efficient Solution of Large, Sparse Sets of Equations. SYMSAC 1981, 146–154.Google Scholar
  153. [153]
    Smit, J., Hulshof, B. J. A., Van Hulzen, J. A.: Netform and Code Optimizer Manual. Twente Univ. of Tech.: TW Memorandum 373 (1981).Google Scholar
  154. [154]
    Stoutemyer, D. R.: Analytic Solution of Integral Equations, Using Computer Algebra. Univ. of Utah: Report UCP-34 (1975).Google Scholar
  155. [155]
    Stoutemyer, D. R.: PICOMATH-80, an Even Smaller Computer Algebra Package. SIGSAM Bull. 14/3, 5–7 (1980).CrossRefGoogle Scholar
  156. [156]
    Strubbe, H.: Presentation of the SCHOONSCHIP System. EUROSAM 1974, 55–60.Google Scholar
  157. [157]
    Strubbe, H.: Manual for SCHOONSCHIP. Comput. Phys. Commun. 8, 1–30 (1974).CrossRefGoogle Scholar
  158. [158]
    Sundblad, Y.: One User’s One-Algorithm Comparison of Six Algebraic Systems on the Y 2n - Problem. SIGSAM Bull. 28, 14–20 (1973).CrossRefGoogle Scholar
  159. [159]
    Tobey, R. G.: Experience with FORMAC Algorithm Design. Commun. ACM 9, 589–597 (1966).MATHCrossRefGoogle Scholar
  160. [160]
    Tobey, R. G.: Algorithms for Anti-Differentiation of Rational Functions. Ph.D. Thesis, Harvard Univ., Cambridge, Mass., 1967.Google Scholar
  161. [161]
    Tobey, R. G.: Symbolic Mathematical Computation — Introduction and Overview. SYMSAM 1971, 1–16.Google Scholar
  162. [162]
    Tobey, R. G., Bobrow, R. J., Zilles, S. N.: Automatic Simplification in FORMAC. Spartan Books 11, 37–52. Wash., D.C.: 1965.Google Scholar
  163. [163]
    Tobey, R. G., et al.: PL/I-FORMAC Symbolic Mathematics Interpreter. IBM, Proj. Number 360D-03.3.004., Contributed Program Library. IBM 1969.Google Scholar
  164. [164]
    Van de Riet, R. P.: ABC ALGOL, a Portable Language for Formula Manipulation Systems. MC Trackts 46/47. Amsterdam: Math. Centre 1973.Google Scholar
  165. [165]
    Van Hulzen, J. A.: FORMAC Today, or What Can Happen to an Orphan. SIGSAM Bull. 8/1, 5–7 (1974).CrossRefGoogle Scholar
  166. [166]
    Van Hulzen, J. A.: Computational Problems in Producing Taylor Coefficients for the Rotating Disk Problem. SIGSAM Bull. 14/2, 36–49 (1980).CrossRefGoogle Scholar
  167. [167]
    Van Hulzen, J. A.: Breuer’s Grow Factor Algorithm in Computer Algebra. SYMSAC 1981, 100–104.Google Scholar
  168. [168]
    Verbaeten, P., Tuttens, W.: A Subroutine Package for Polynomial Manipulation. Kath. Univ. Leuven. Applied Math, and Prog. div. Report TW 12 (1973).Google Scholar
  169. [169]
    Watanabe, S.: A Technique for Solving Ordinary Differential Equations Using Riemann’s P- Functions. SYMSAC 1981, 36–43.Google Scholar
  170. [170]
    Willers, I. M.: A New Integration Algorithm for Ordinary Differential Equations Based on Continued Fraction Approximation. Commun. ACM 17, 508–509 (1974).MathSciNetCrossRefGoogle Scholar
  171. [171]
    Williams, L. H.: Algebra of Polynomials in Several Variables for a Digital Computer. J. ACM 9, 29–40 (1962).MATHCrossRefGoogle Scholar
  172. [172]
    Wite, J. L.: LISP/370: A Short Technical Description of the Implementation. SIGSAM Bull. 12/4, 23–27 (1978).CrossRefGoogle Scholar
  173. [173]
    Xenakis, J.: The PL/I-FORMAC Interpreter. SYMSAM 1971, 105–114.Google Scholar
  174. [174]
    Yun, D. Y. Y., Stoutemyer, R. D.: Symbolic Mathematical Computation. In: Encyclopedia of Computer Science and Technology (Beizer, J., Holzman, A. G., Kent, A., eds.), Vol. 15, pp. 235–310. New York-Basel: Marcel Dekker 1980.Google Scholar

Copyright information

© Springer-Verlag/Wien 1983

Authors and Affiliations

  • J. A. van Hulzen
    • 1
  • J. Calmet
    • 2
  1. 1.Department of Applied MathematicsTwenty University of TechnologyAE EnschedeThe Netherlands
  2. 2.Laboratoire d’Informatique et de Mathématiques Appliquées de GrenobleIMAGGrenoble CédexFrance

Personalised recommendations