Advertisement

Brain Edema pp 517-529 | Cite as

Radio-Isotopic Studies in Brain Edema

  • Louis Bakay
Conference paper

Abstract

The original source of the tissue fluid of the central nervous system, whether normal or edematous, is the blood plasma. Consequently, the exchange of water and solutes between plasma and normal as well as edematous brain and their distribution within the various intracerebral compartments is of considerable importance. Data available in man in terms of molecular tissue morphology and chemistry are too few for the evaluation of the biological forces involved in the production of edema. This, at the present time, is largely limited to experimental edemas. These experimental, and consequently artificial, conditions are sometimes completely analogous with the conditions affecting man. Other experimental situations are probably similar to, but not identical with, their human equivalent. However, at the present stage of our limited knowledge about the pathophysiology of the different types of cerebral edemas, controlled investigations are indispensable. The application of radio-active and non-radioactive tracers to study the rate of exchange of various compounds between plasma and edematous brain places a heavy emphasis on experimental work.

Keywords

White Matter Cerebral Edema Purify Protein Derivative Cortical Lesion Edematous Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleu, F. P., F. L. Edelman, R. Katzman and L. C. Scheinberg: Ultrastructural and biochemical analysis in cerebral edema associated with experimental mouse gliomas, J. Neuropath. Exp. Neurol., 23: 253–263 (1964).PubMedCrossRefGoogle Scholar
  2. Aleu, F. P., F. L. Edelman, R. Katzman, L. C. Scheinberg, R. Katzman and R. D. Terry: Fine structure and electrolyte analysis of cerebral edema induced by alkyl tin intoxication, Ibid.. 22: 403–413 (1963).Google Scholar
  3. Bakay, L.: Morphological and chemical studies in cerebral edema. Triethyltin induced edema, J. Neurol. Sci., 2; 52–67 (1965).PubMedCrossRefGoogle Scholar
  4. Bakay, L. and H. H. Bendixen: Central nervous system vulnerability in hypoxic states: Isotope uptake studies, in: Selective Vulnerability of the Central Nervous System in Hypoxaemia (ed. By W. H. McMenemey and J. F. Schade), Oxford: Blackwell Scient. Publ., p. 63–78 (1963).Google Scholar
  5. Bakay, L., H. H. Bendixen and I. ul Haque: Morphological and chemical studies in cerebral edema. I. Cold-induced edema, J. Neuropath. Exp. Neurol., 23; 393–418 (1964).CrossRefGoogle Scholar
  6. Bakay, L., H. H. Bendixen, I. ul Haque and J. C. Lee: Cerebral Edema, Springfield, Ill.: Charles C. Thomas Publ. (1965).Google Scholar
  7. Clasen, R. A., D. V. L. Brown, S. Leavitt and G. M. Hass: The production by liquid nitrogen of acute closed cerebral lesions, Surg., Gyn. Obst., 96; 605–616 (1953).Google Scholar
  8. Crone, C.: The permeability of capillaries in various organs as determined by use of the indicator diffusion method, Acta Physiol. Scand., 58; 292–305 (1963).CrossRefGoogle Scholar
  9. Cutler, R. W. P., G. V. Watters and C. F. Barlow: I125 -labeled protein in experimental brain edema, Arch. Neurol., 11; 225–238 (1964).Google Scholar
  10. Goldberg, M. A., C. F. Barlow and L. J. Roth: The effects of carbon dioxide on the entry and accumulation of drugs in the central nervous system, J. Pharm. Exp. The rap., 131, 308–318 (1961).Google Scholar
  11. Gonatas, N. K., H. M. Zimmerman and S. Levine: Ultra-structure of inflammation with edema in the rat brain, Amer. J. Path., 42; 455–469 (1963).Google Scholar
  12. Gunn, C. G., G. R. Williams and I. T. Parker: Edema of the brain following circulatory arrest, J. Surg. Res., 2; 141–143 (1962).PubMedCrossRefGoogle Scholar
  13. Hills, C. P. and R. G. Spector: Anoxia and cerebral water content in the adult rat, Nature (London), 199; 393 (1963).CrossRefGoogle Scholar
  14. Hirano, A., H. M. Zimmerman and S. Levine: The fine structure of cerebral fluid accumulation, III: Extracellular spread of cryptococcal polysaccharide in the acute state, Amer. J. Path., 45; 1–19 (1964).Google Scholar
  15. Katzman, R., R. Aleu and C. Wilson: Further observations on triethyl tin edema, Arch. Neurol., 9, 178–187 (1963).Google Scholar
  16. Katzman, R., R. Aleu, C. Wilson, N. Gonatas and S. Levine: Electrolytes and fluids in experimental focal leucoencephalopathy, Ibid., 10; 58–65 (1964).Google Scholar
  17. Klatzo, I., J. Miquel and R. Otenasek: The application of fluorescein labeled serum proteins (FLSP) to the study of vascular permeability in the brain, Acta Neuropathol., 2; 144–160 (1962).CrossRefGoogle Scholar
  18. Klatzo, I., J. Miquel, R. Otenasek, A. Piraux and E.J. Laskowski: The relationship between edema, blood-brain barrier and tissue elements in a local brain injury, J. Neuropath. Exp. Neurol., 17; 548–564 (1958).PubMedCrossRefGoogle Scholar
  19. Lee, J. C. and L. Bakay: Ultrastructural changes in the edematous central nervous system, I: Triethyltin edema, Arch. Neurol., 13; 48–57 (1965).Google Scholar
  20. Lee, J. C. and L. Bakay: Ultrastructural changes in the edematous central nervous system, II: Cold-induced edema, Ibid., 14, 36–49 (1966).Google Scholar
  21. Levine, S., H. M. Zimmerman, E. J. Wenk and N. K. Gonatas: Experimental leukoencephalopathies due to implantation of foreign substances, Am. J. Path., 42, 97–117 (1963).PubMedGoogle Scholar
  22. Magee, P. N., H. B. Stoner and J. M. Barnes: The experimental production of edema in the central nervous system of the rat by triethyltin compounds, J. Path. Bact., 73; 107–124 (1957).CrossRefGoogle Scholar
  23. Pappius, H. M. and D. R. Gulati: Water and electrolyte content of cerebral tissues in experimentally induced edema, Acta Neuropath., 2; 451–460 (1963).CrossRefGoogle Scholar
  24. Planiol, T.: Diagnostic des Lesions Intra-Craniennes par les Radio- Isotopes (Gammaencephalographie), Paris: Masson &Cie. (1959).Google Scholar
  25. Reed, D. J., D. M. Woodbury and R. L. Holtzer: Brain edema, electrolytes and extracellular space. Effect of triethyl tin on brain and skeletal muscle, Arch. Neurol., 10; 604–616 (1964).Google Scholar
  26. Spector, R. C.: Water content of the brain in anoxic-ischaemic encephalopathy in adult rats, Brit. J. Exp. Path., 42, 623–630 (1961).PubMedGoogle Scholar
  27. Sperl, Jr., M. P., H. J. Svien, N. P. Goldstein, J. W. Kernohan and J. H. Grindlay: Experimental production of local cerebral edema by an expanding intracerebral mass, Proc. Mayo Clin., 32; 744–749 (1957).Google Scholar
  28. Streicher, E., P. J. Ferris, J. D. Prokop and I. Klatzo: Brain volume and thiocyanate space in local cold injury, Arch. Neurol., U, 444–449 (1964).Google Scholar
  29. Tator, C. H., T. P. Morley and J. Olszewski: A study of the factors responsible for the accumulation of radioactive iodinated serum albumin (RISA) by intracranial tumors and other lesions, J. Neurosurg., 22, 60–76 (1965).PubMedCrossRefGoogle Scholar
  30. Taylor, J. M., W. A Levy, I. Herzog and L. C. Scheinberg: Prevention of experimental cerebral edema by corticosteroids. Biochemical and Ultrastructural studies, Neurology, 15; 667–674 (1965).PubMedGoogle Scholar
  31. Torack, R. M., R. D. Terry and H. M. Zimmerman: The fine structure of cerebral fluid accumulation. I. Swelling secondary to cold injury, Am. J. Path., 35; 1135–1147 (1959).Google Scholar
  32. Van Harreveld, A.: Water and electrolyte distribution in central nervous tissue, Fed. Proc., 21; 659–664 (1962).Google Scholar
  33. Van Harreveld and P. J. Schade: On the distribution and movements of water and electrolytes in the cerebral cortex, in: Structure and Function of the Cerebral Cortex Amsterdam: Elsevier Publ. Co., p. 253–256 (1960).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1967

Authors and Affiliations

  • Louis Bakay

There are no affiliations available

Personalised recommendations