Brain Edema pp 285-302 | Cite as

Morphological Compartments in the Central Nervous System

  • Hermann Hager
Conference paper


During the physiological studies on the functional compartments (extracellular space, glial space, neuronal space) of the central nervous system, the need for a comparison of these measurements with the morphological characteristics of the nervous tissue, and for the correlation of these two approaches, became apparent. In addition to the functional compartmentation, the structural delineation of the cerebral spaces would be of paramount importance for the interpretation of the pathological changes which are characteristic of cerebral edema. Various investigations were undertaken to determine the functional extracellular space in the brain. Determinations of the chloride space (Tower, 1958) and measurements of cortical impedance (van Harreveld & Ochs, 1956) tend to substantiate a space of 25–30%. However, the functional extracellular compartment, as measured with radioactive sulfate (Woodbury, 1958), thiocyanate (Streicher, 1961), and C -sucrose (Reed & Woodbury, 1960), was significantly smaller (4–15%) than the chloride space. Light microscopic investigations of the morphological spaces using any or all of the histological methods at our command demonstrated nerve cell bodies, myelinated and unmyelinated nerve fibers, coarser ramifications of dendrites and neuroglia cells with their processes.


Extracellular Space Perivascular Space Glutaric Acid Astrocytic Process Osmic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blinzinger, K. H., N. B. Rewcastle and H. Hager: Beobachtungen über Mitochondrien mit eigenartiger Innenstruktur (Prisma-Typ) in Astrozyten des Goldhamster gehirns, Zschr. Naturforsch., 19 b (1964).Google Scholar
  2. Blinzinger, K. H., N. B. Rewcastle and H. Hager: Observations on prismatic-type mitochondria within astrocytes of the Syrian hamster brain, J. Cell Biol., 25, 293–303 (1965).PubMedCrossRefGoogle Scholar
  3. Brambring, P.: Elektronenmikroskopische Untersuchungen über die Weite des Extrazellularraumes im Grosshirnmark, Acta Neuropath., 4, 317–325 (1965).CrossRefGoogle Scholar
  4. Campbell, A. W.: Histological Studies on the Localization of Cerebral Function. Cambridge University Press, p. 360 (1905).Google Scholar
  5. Fawcett, D. W.: Identification of particulate glycogen and ribonucleoprotein in electron micrographs, J. Histochem. Cytochem., 6, 95 (1958).Google Scholar
  6. Fernandez-Moran, H. and J. B. Finean: Electron microscope and low-angle X-ray diffraction studies of the nerve myelin sheath, J. Biophys. Biochem. Cytol., 3, 725–748 (1957).PubMedCrossRefGoogle Scholar
  7. Gonatas, N. K., H. M. Zimmerman and S. Levine: Ultrastructure of inflammation with edema in the rat brain, Amer. J. Path.. 42, 455–469 (1963).Google Scholar
  8. Hager, H.: Elektronenmikroskopische Untersuchungen über die Feinstruktur der sogenannten Grundsubstanz der Gross- und Kleinhirnrinde des Säugetiers, Arch. Psychiatr., 198, 574–600 (1959).Google Scholar
  9. Hager, H.: Elektronenmikroskopische Untersuchungen über die Feinstruktur der Blutgefässe und perivasculären Räume im Säugetiergehirn. Ein Beitrag zur Kenntnis der morphologischen Grundlagen der sogenannten Bluthirnschranke, Acta Neuropath., 1, 9–33 (1961).PubMedCrossRefGoogle Scholar
  10. Hager, H.: Die feinere Cytologie und Cytopathologie des Nervensystems, dargestellt auf Grund elektronenmikroskopischer Befunde. Veröf-fentlichungen aus der morphologischen Pathologie, No. 67, Stuttgart: Gustav Fischer Verlag (1964).Google Scholar
  11. van Harreveld, A.: Changes in volume of cortical neuronal elements during asphyxiation, Amer. J. Path.. 191. 233–242 (1957).Google Scholar
  12. van Harreveld, A. and J. Crowell: Extracellular space in central nervous tissue, Fed. Proc., 23, 304 (1964).Google Scholar
  13. van Harreveld, A. and S. Ochs: Cerebral impedance changes after circulatory arrest, Amer. J. Physiol., 187, 180–192 (1956).Google Scholar
  14. Hess, A.: The ground substance of the central nervous system revealed by histochemical staining, J. Comp. Neurol., 98, 69–92 (1953).PubMedCrossRefGoogle Scholar
  15. Horstmann, E.: Die Struktur der molekularen Schichten im Gehirn der Wirbeltiere. Naturwiss.. 44, 448 (1957).CrossRefGoogle Scholar
  16. Horstmann, E. and H. Meves: Die Feinstruktur des molekularen Rindengraues und ihre physiologische Bedeutung, Zschr. Zellforsch.. 49, 569–604 (1959).CrossRefGoogle Scholar
  17. Karlsson, U. and R. L. Schulz: Plasma membrane apposition in the central nervous system after aldehyde perfusion, Nature, 201, 1230–1231 (1964).PubMedCrossRefGoogle Scholar
  18. and: Fixation of the central nervous system for electron microscopy by aldehyde perfusion I. Preservation with aldehyde perfusates versus direct perfusion with osmium tetroxide with special reference to membranes and the extracellular space, J. Ultrastruct. Res.. 12. 160–186 (1965).CrossRefGoogle Scholar
  19. Klatzo, J., J. Miquell, W. Haymaker, C.Tobias and L. S. Wolfe: Observations on appearance of histochemically demonstrable glycogen in the rat brain as an effect of alpha particle radiation,in: Effect of ionizing radiation on the nervous system, Internat. Atomic Energy Agency, Vienna, 285–296 (1962).Google Scholar
  20. Koch, A., J. B. Ranke and B. L. Newman: Ionic Content of Neuroglia, Exper. Neurol., 6, 186–200 (1962).Google Scholar
  21. Nelson, E., K. Blinzinger and H. Hager: Electron microscopic ob¬servations on the subarachnoid and perivascular spaces of the Syrian hamster brain, Neurology, U, 285 - 295 (1961).Google Scholar
  22. Niessing, K. and W. Vogell: Das elektronenoptische Bild der sogenannten Grundsubstanz der Hirnrinde, Zschr. Naturforsch., 12b. 641–646 (1957).Google Scholar
  23. Nissl, F.: Die Neuronenlehre und ihre Anhänger, Jena: Gustav Fischer Verlag (1903).Google Scholar
  24. Reed, D. J. and D. M. Woodbury: Kinetics of C -sucrose distribution in cerebral cortex, Cerebrospinal fluid and plasma of rats, Fed. Proc. J., 19, 80 (1960).Google Scholar
  25. Revel, J. P., L. Napolitano and D. W. Fawcett: Identifications of glycogen in electron micrographs of thin tissue section, J. Bio- phys. Biochem. Cytol., 8, 575 (1960).CrossRefGoogle Scholar
  26. Rewcastle, N. B.: Glutaric acid dialdehyde; a routine fixative for central nervous system electron microscopy, Nature, 205, 207–208 (1965).PubMedCrossRefGoogle Scholar
  27. Robertson, J. D.: The cell membrane concept, J. Physiol., 140, 58 (1957).Google Scholar
  28. Robertson, J. D.: Structural alterations in nerve fibers produced by hypotonic solutions, J. Biophys. Biochem. Cytol., 4, 349–364 (1958).PubMedCrossRefGoogle Scholar
  29. Robertson, J. D.: The ultrastructure of cell membranes and their derivatives, Biochem. Soc. Symposia, 16, 3–43 (1959).Google Scholar
  30. Robertson, J. D.: A molecular theory of cell membrane structure, Vierter Internationaler Kongress für Elektronenmikroskopie, Berlin, 1958, Verh., Vol. II, 159–171. Berlin-Göttingen-Heidelberg: Springer-Verlag (1960).Google Scholar
  31. Robertson, J. D.: The unit membrane of cells and mechanisms of myelin formation, in: Ultrastructure and metabolism of the nervous system, Research Publications, Association for Research in Nervous and Mental Disease, Vol. 40, 94–158. Baltimore: Williams & Wilkins (1962).Google Scholar
  32. Schade, J. P.: Functional correlates of ionic movements in the cerebral cortex, in: Selective Vulnerability of the Brain in Hypoxaemia (ed. by J. P. Schade and W. H. McMenemey), Oxford: Blackwell Scientific Publications, 89–99 (1963).Google Scholar
  33. Schultz, R. L. and U. Karlsson: Fixation of the central nervous system for electron microscopy by aldehyde perfusion; II: Effect of osmolarity, pH of perfusate, and fixative concentration, J. Ultrastruct. Res.T 12. 187–206 (1965).CrossRefGoogle Scholar
  34. Sjöstrand, F. S.: Electron microscopy of myelin and of nerve cells and tissue, in: Modern Scientific Aspects of Neurology (ed. by J. N. Cummings), London: Edward Arnold Ltd., 188–231 (1960).Google Scholar
  35. Streicher, E.: The thiocyanate space of rat brain, Amer. J. Physiol., 201. 334 (1961).Google Scholar
  36. Themann, H.: Elektronenoptische Untersuchungen über das Glykogen im Zellstoffwechsel, Veröffentlichungen aus der morphologischen Pathologie, 66. Stuttgart: Gustav Fischer Verlag (1963).Google Scholar
  37. Tower, D. B.: The neurochemical substrates of cerebral function and activity, in: Biological and Biochemical Bases of Behavior (ed. by H. F. Harlow and C. M. Woolsey ), Madison: University of Wisconsin Press (1958).Google Scholar
  38. Wolfe, L. S., J. Klatzo, J. Miquell, C. Tobias and W. Haymaker: Effect of alpha-particle irradiation on brain glycogen in the rat, J. Neurochem., 9, 213 (1962).PubMedCrossRefGoogle Scholar
  39. Woodbury, D. M.: Discussion remarks, in: Biology of Neuroglia, (ed. by W. F. Windle), Springfield: Charles C. Thomas, 120–127 (1958).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1967

Authors and Affiliations

  • Hermann Hager

There are no affiliations available

Personalised recommendations