Skip to main content

NO in der Therapie des ARDS

  • Chapter
Beatmung

Part of the book series: Intensivmedizinisches Seminar ((INTENSIVM.SEM.,volume 5))

  • 20 Accesses

Zusammenfassung

Das akute Lungenversagen des Erwachsenen (ARDS) ist gekennzeichnet durch eine generalisierte pulmonale Entzündungsreaktion mit einem nicht-kardiogen ausgelöstem Lungenödem, einer pulmonalen Hypertonie und einer ausgeprägten Zunahme des intrapulmonalen Shunts mit konsekutiver Hypoxämie [1, 43]. Die Mortalität dieses Syndroms ist auch heute noch höher als 50% [8, 37, 38]. Mögliche pathogenetische Mechanismen, die unter anderem für die schlechten Behandlungsergebnisse eine Rolle spielen können, sind sowohl die pulmonale Hypertonie als auch die zur Aufrechterhaltung normaler Blutgase notwendige aggressive Beatmungsstrategie. Die pulmonale Hypertonie bewirkt einerseits einen Anstieg des mikrovaskulären Filtrationsdruckes [7], der das alveolo-interstitielle Lungenödem verstärkt [15], und andererseits wird durch den pulmonalen Hypertonus ein Rechtsherzversagen begünstigt [36, 39]. Systemisch infundierte Vasodilatatoren senken zwar den pulmonal-arteriellen Druck (PAP), doch auf Grund der diffusen Wirkung auf das Gefäßbett im großen und kleinen Kreislauf sind sie nur eingeschränkt einsetzbar: Im Systemkreislauf verursacht die auftretende Dilatation eine arterielle Hypotonie mit möglichen negativen Folgen für die Durchblutung unterschiedlichster Organe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ashbaugh D G, Bigelow D B, Petty T L, Levine B E (1967) Acute respiratory distress in adults. Lancet ii: 319–323

    Google Scholar 

  2. Austin A T (1967) The chemistry of the higher oxides of nitrogen as related to the manufacture, storage and administration of nitrous oxide. Br J Anaest 39: 345–350

    Article  CAS  Google Scholar 

  3. Bredt D S, Hwang P M, Snyder S H (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347: 768–770

    Article  PubMed  CAS  Google Scholar 

  4. Brenner B M, Troy J L, Ballermann B J (1990) Endothelium-dependent vascular responses. J Clin Invest 84: 1373–1378

    Article  Google Scholar 

  5. Centers for Disease Control (1988) Recommendations for occupational safety and health standard. MMWN 37 [Suppl 5–7]

    Google Scholar 

  6. Clutton-Brock J (1967) Two cases of poisoning by contamination of nitrous oxide with the higher oxides of nitrogen during anesthesia. Br J Anaest 39: 388–392

    Article  CAS  Google Scholar 

  7. Erdmann J A, Vaughan T R, Brigham K L, Woolverton W C, Staub N C (1975) Effect of increased intravascular pressure on lung fluid balance of anesthetized sheep. Circ Res 37: 271–284

    PubMed  Google Scholar 

  8. European ARDS Collaborative Working Group (1988) Adult respiratory distress syndrome (ARDS): clinical predictors, prognostic factors and outcome. Intensive Care Med 14 [Suppl 1]: 300

    Google Scholar 

  9. Evans J W, Wagner P D (1977) Limits on Va/Q distributions from analysis of experimental inert gas elimination. J Appl Physiol 42: 889–898

    PubMed  CAS  Google Scholar 

  10. Falke K, Rossaint R, Pison U, Slama K, Lopez F, Santak B, Zapol WM (1991) Inhaled nitric oxide selectively reduces pulmonary hypertension in severe ARDS and improves gas exchange as well as right heart ejection fraction: a case report. Am Rev Respir Dis 143: [Suppl A248]

    Google Scholar 

  11. Frosteil C, Fratacci M D, Wain J C, Jones R, Zapol W M (1991) Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 83: 2038–2047

    Google Scholar 

  12. Furchgott R F, Zawaadzki J V (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Article  PubMed  CAS  Google Scholar 

  13. Furlong B, Henderson A H, Lewis M J, Smith J A (1987) Endothelium derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol 90: A687

    Google Scholar 

  14. Goldstein E, Peek N F, Parks N J, Hines H H, Steffey E P, Tarkington H (1977) Fate and distribution of inhaled nitrogen dioxide in rhesus monkeys. Am Rev Respir Dis 115: 403–412

    PubMed  CAS  Google Scholar 

  15. Gottlieb S S, Wood L D H, Hansen D E, Long R (1987) The effect of nitroprusside on pulmonary edema, oxygen exchange, and blood flow in hydrochloric acid aspiration. Anesthesiology 67: 203–210

    Article  PubMed  CAS  Google Scholar 

  16. Greenbaum R, Bay J, Hargreaves M D, Kain M L, Kelman G R, Nunn J F, Prys-Roberts C, Siebold K (1967) Effects of higher oxides of nitrogen on the anaesthe-tized dog. Br J Anaest 39: 393–404

    Article  CAS  Google Scholar 

  17. Haschek W M, Reiser K M, Klein-Szanto A J P, Kehrer J P, Smith L H, Last J A, Witschi H P (1983) Potentiation of butylated hydroxytoluene-induced acute lung damage by oxygen: cell kinetics and collagen metabolism. Am Rev Respir Dis 127: 28–34

    PubMed  CAS  Google Scholar 

  18. Hibbs J B, Taintor R R, Vavrin Z, Rachlin E M (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157: 87–94

    Article  PubMed  CAS  Google Scholar 

  19. Hibbs J B, Zdenek V, Traintor R R (1987) L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138: 550–565

    PubMed  CAS  Google Scholar 

  20. Hugod C (1979) Effect of exposure to 43 ppm nitric oxide and 3.6 ppm nitrogen dioxide on rabbit lung. Int Arch Occup Environ Health 42: 159–167

    Article  PubMed  CAS  Google Scholar 

  21. Ignarro L J (1989) Endothelium-derived nitric oxide, actions and properties. Faseb J 3: 31–36

    PubMed  CAS  Google Scholar 

  22. Ignarro L J, Buga G M, Wood K S, Byrns R E, Chaudhurri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sei USA 84: 9265–9269

    Article  CAS  Google Scholar 

  23. Klimm J, Bein T H, Fröhlich D, Taeger K (1992) Stickstoffmonoxid ( NO) physiologische und biochemische Bedeutung. Anästh Intensivmed 33: 115–123

    Google Scholar 

  24. Kolobow T, Moretti M P, Fumagalli R, Mascheroni D, Prato P, Chen V, Joris M (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315

    PubMed  CAS  Google Scholar 

  25. Moncada S, Palmer M J, Higgs E A (1991) Nitric oxide: physiology, pathophysio-logy, and pharmacology. Pharmacol Rev 43: 109–142

    PubMed  CAS  Google Scholar 

  26. Myers P R, Minor R L, Guerra R, Bates J N, Harrison D G (1990) Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 345: 161–163

    Article  PubMed  CAS  Google Scholar 

  27. Norman V, Keith C H (1965) Nitrogen oxides in tobacco smoke. Nature 205: 915–916

    Article  CAS  Google Scholar 

  28. Oda H, Kusumoto S, Nakajima T (1975) Nitrosylhemoglobin formation in the blood of animals exposed to nitric oxide. Arch Environ Health 30: 453–456

    PubMed  CAS  Google Scholar 

  29. Oda H, Nogami H, Kusumoto S, Nakajima T, Kurata A, Imai K (1976) Long-term exposure to nitric oxide in mice. J Jpn Soc Air Pollut 11: 150–160

    CAS  Google Scholar 

  30. Palmer R M J, Ferrige A G, Moncada S A (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  PubMed  CAS  Google Scholar 

  31. Radermacher P, Santak B, Becker H, Falke K J (1989) Prostaglandin El and nitroglycerin reduce pulmonary capillary pressure but worsen Va/Q distributions in patients with ARDS. Anesthesiology 70: 601–606

    Article  PubMed  CAS  Google Scholar 

  32. Rossaint R, Falke K J, Keitel M, Lopez F, Pison U, Slama K, Griming T, Zapol W M (1992) Inhaled nitric oxide in contrast to infused prostacyclin selectively reduces pulmonary hypertension and improves gas exchange in severe ARDS. Am Rev Respir Dis 145: A185

    Google Scholar 

  33. Rossaint R, Falke K J, Keitel M, Slama K, Gerlach H, Hahn M, Zapol WM (1992) Successful treatment of severe adult respiratory distress syndrome with inhaled nitric oxide. Am Rev Respir Dis 145: A80

    Article  Google Scholar 

  34. Rossaint R, Slama K, Falke K (1991) Therapie des ARDS. Dtsch Med Wochenschr 116: 1635–1639

    Article  PubMed  CAS  Google Scholar 

  35. Rossaint R, Slama K, Lewandowski K, Streich R, Henin P, Hopfe T, Barth H, Nienhaus M, Weidemann H, Lemmens P, Fuchs J, Falke K (1992) Extracorporeal lung assist with heparin-coated systems. Int J Artif Org 15: 29–34

    CAS  Google Scholar 

  36. Sibbald W J, Driedger A A, Myers M L, Short A K, Wells G A (1983) Biventricular function in the adult respiratory distress syndrome. Chest 84: 126–134

    Article  PubMed  CAS  Google Scholar 

  37. Suchyta M R, Clemmer T P, Orme J F, Murris A H, Elliott C G (1991) Increased survival of ARDS patients with severe hypoxemia ( ECMO criteria ). Chest 99: 951–955

    Google Scholar 

  38. Tharratt R S, Allen R P, Albertson T E (1988) Pressure controlled inverse ratio ventilation. Chest 94: 755–762

    Article  PubMed  CAS  Google Scholar 

  39. Vlahakes G J, Turley K, Hoffmann J I E (1981) The pathophysiology of failure in acute right ventricular hypertension: Hemodynamic and biochemical correlations. Circulation 63: 87–95

    Google Scholar 

  40. Wagner H M (1970) Absorption von NO und NO2 in MIK- und MAK-Konzen- trationen bei der Inhalation. Staub Reinhalt Luft 30: 380 - 381

    CAS  Google Scholar 

  41. Wagner P D, Saltzmann H A, West J B (1974) Measurements of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol 36: 588–599

    PubMed  CAS  Google Scholar 

  42. Yoshida K, Kasama K (1987) Biotransformation of nitric oxide. Env Health Persp 73: 201–206

    Article  CAS  Google Scholar 

  43. Zapol WM, Snider MT (1977) Pulmonary artery hypertension in severe acute respiratory failure. N Engl J Med 296: 476–480

    Article  PubMed  CAS  Google Scholar 

  44. Zapol W M, Snider M T, Rie M A, Frikker M, Quinn DA (1985) Pulmonary circulation during ARDS. In: Zapol WM, Falke K (eds) Acute respiratory failure, vol 24. Marcel Dekker, New York, pp 241–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this chapter

Cite this chapter

Rossaint, R., Lewandowski, K., Falke, K. (1993). NO in der Therapie des ARDS. In: Kleinberger, G., Lenz, K., Ritz, R., Schuster, HP., Simbruner, G., Slany, J. (eds) Beatmung. Intensivmedizinisches Seminar, vol 5. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7543-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7543-9_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82438-2

  • Online ISBN: 978-3-7091-7543-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics