Advertisement

Asthma pp 109-126 | Cite as

Mucus production in the lower airways — therapeutic implications

  • J. D. Lundgren

Summary

Increased mucus production in the lower airways during exacerbation of bronchial asthma may contribute to airway obstruction. A variety of pathophysiological mechanisms may cause the increase in mucus production including imbalances in the autonomic nervous system including release of neuropeptides and activation of the cholinergic nervous system, increased release of secretagogues from epithelial cells and release of secretagogues from accumulated inflammatory cells, e.g. basophilic, eosinophilic and neutrophilic granulocytes.

Clinical trials documenting the efficacy of therapeutic agents in controlling the enhanced mucus production are not available. However several of the regimes in current use may modulate mucus secretion and/ or transport. Rational approaches to prevent the increased production of mucus in asthma includes:
  1. 1.

    manipulation of the nervous system,

     
  2. 2.

    use of antiinflammatory agents, and

     
  3. 3.

    increase clearence.

     

Of licensed drugs, glucocorticoids, beta-adrenergic agonists, cholinergic antagonists and possible theophylline may be beneficial in the management of mucus hypersecretion in asthma.

Keywords

Goblet Cell Vasoactive Intestinal Peptide Lower Airway Human Airway Eosinophil Cationic Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Schleimsekretion und deren pharmakologische Beeinflußbarkeit. Die gesteigerte Schleimproduktion in den tiefen Luftwegen während einer Exazerbation des Asthma bronchiale kann maßgeblich zur Obstruktion beitragen. Eine Reihe von pathophysiologischen Mechanismen kann die Schleimproduktion steigern:
  1. 1.

    Balancestörungen im autonomen Nervensystem, einschließlich Freisetzung von Neuropeptiden und Aktivierung von cholinergischen Nerven,

     
  2. 2.

    gesteigerte Freisetzung von Sekretagoga aus Epithelzellen und ak¬tivierten Mastzellen,

     
  3. 3.

    Freisetzung von Sekretagoga aus Ansammlungen entzündlicher Zellen, z.B. eosinophilen und neutrophilen Granulozyten.

     

Die Aktivierung des beta-adrenergischen Rezeptors oder eine intrazelluläre Steigerung des cAMP beeinflußt wohl nicht direkt die Schleimproduktion, ist aber für den verbesserten Abtransport von Schleim aus den Luftwegen verantwortlich. Die Sekretagoga, welche von ortsansässigen und hinzugekommenen Zellen freigesetzt werden, bestehen aus Eikosanoiden (Prostaglandine und Peptyl-Leukotriene), plättchenaktivierendem Faktor (PAF), eosinophilem kationischen Protein (ECP) und neutrophiler Elastase.

Klinische Prüfungen, welche die Wirksamkeit von therapeutischen Stoffen bei der Behandlung von gesteigerter Mucusproduktion dokumentieren, sind bislang nicht verfügbar. Ein vernünftiger Zugang zur Verminderung der gesteigerten Schleimproduktion beim Asthma schließt folgende Schritte ein:
  1. 1.

    Beeinflussung der nervösen Steuerung

     
  2. 2.

    Anwendung von entzündungshemmenden Medikamenten

     
  3. 3.

    Expektorantien.

     

Von den registrierten Medikamenten sind die Anticholinergika und die Glukokortikoide wahrscheinlich besonders nützlich, es werden aber ständig neue Medikamente entwickelt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Woolcock AJ (1994) Asthma. In: Murray JF, Nadel JA (eds) Textbook of respiratory medicine. Saunders, Philadelphia, pp 1228–1330Google Scholar
  2. 2.
    Lundgren JD, Baraniuk JN (1992) Mucus secretion and inflammation. Pulm Pharmacol 5: 81–96PubMedCrossRefGoogle Scholar
  3. 3.
    Shimura S, Sasaki T, Sasaki H, Takishima T (1988) Bronchorrhea sputum in bronchial asthma. Am Rev Respir Dis 137: A14Google Scholar
  4. 4.
    Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T (1985) Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131: 138–143Google Scholar
  5. 5.
    Lundgren JD (1992) Mucus production in the lower airways (dissertation). Dan Med Bull 39: 289–303PubMedGoogle Scholar
  6. 6.
    James AL, Pare PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am Rev Respir Dis 139: 242–246PubMedCrossRefGoogle Scholar
  7. 7.
    Silberberg A (1988) Models of mucus structure. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven Press, New York, pp 51–62Google Scholar
  8. 8.
    Mooren HWD, Meijer CJLM, Kramps JA, Franken C, Dijkman JA (1982) Ultrastructural localization of the low molecular weight protease inhibitor in human bronchial glands. J Histochem Cytochem 30: 1130–1135PubMedCrossRefGoogle Scholar
  9. 9.
    Boucher RC (1994) Human airway ion transport. Am J Respir Crit Care Med 150: 271–281PubMedGoogle Scholar
  10. 10.
    Reid LM (1960) Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax 15: 132–141PubMedCrossRefGoogle Scholar
  11. 11.
    Barnes PJ (1990) Neurogenic inflammation in airways and its modulation. Arch Int Pharmacol Ther 303: 67–82Google Scholar
  12. 12.
    Shelhamer JH, Marom Z, Kaliner M (1980) Immunologic and neuropharmacologic stimulation of mucus glycoprotein release from human airways. J Clin Invest 66: 1400–1408PubMedCrossRefGoogle Scholar
  13. 13.
    Jeanneret-Grosjean A, King M, Michoud MC, Liote H, Amyot R (1988) Sampling technique and rheology of human trachebronchial mucus. Am Rev Respir Dis 137: 707–712PubMedGoogle Scholar
  14. 14.
    Pavia D, Bateman JRM, Clarke SW (1980) Deposition and clearence of inhaled particles. Clin Respir Physiol 16: 335–366Google Scholar
  15. 15.
    Barnes PJ, Basbaum CB (1983) Mapping of adrenergic receptors in the trachea by autoradiography. Exp Lung Res 5: 183–186PubMedCrossRefGoogle Scholar
  16. 16.
    Wanner A (1988) Mucus transport in vivo. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven Press, New York, pp 279–290Google Scholar
  17. 17.
    Pearsson CGA (1988) Xanthines as airway anti-inflammatory drugs. J Allergy Clin Immunol 81: 615–617CrossRefGoogle Scholar
  18. 18.
    Peatfield AC, Richardson PS (1983) Evidence for non-cholinergic, non- adrenergic nervous control of mucus secretion into the cat trachea. J Physiol 342: 335–345PubMedGoogle Scholar
  19. 19.
    Barnes PJ (1986) Asthma as an axon reflex. Lancet i: 242–245Google Scholar
  20. 20.
    Tokuyama K, Kuo H-P, Rohde JAL, Barnes PJ, Rogers DF (1990) Neural control of goblet cell secretion in guinea pig airways. Am J Physiol 259: L108–L115PubMedGoogle Scholar
  21. 21.
    Empey DW, Laitinen LA, Jacobs, L, Gold WM, Nadel JA (1976) Mechanisms of bronchial hyperreactivity in normal subjects after upper respiratory tract infection. Am Rev Respir Dis 113: 131–139PubMedGoogle Scholar
  22. 22.
    Baraniuk JN, Lundgren JD, Goff J, Peden D, Merida M, Shelhamer J, Kaliner M (1990) Gastrin releasing peptide ( GRP) in human nasal mucosa. J Clin Invest 85: 998–1005PubMedCrossRefGoogle Scholar
  23. 23.
    Marom Z, Shelhamer JH, Kaliner MA (1981) The effects of arachidonic acid, monohydroxyeicosatetraenoic acid, and prostaglandins on the release of mucous glycoproteins from human airways in vitro. J Clin Invest 67: 1695–1702PubMedCrossRefGoogle Scholar
  24. 24.
    Rich B, Peatfield AC, Williams IP, Richardson PS (1984) Effects of prostaglandins E1, E2, and F2alpha on mucin secretion from human bronchi in vitro. Thorax 39: 420–423PubMedCrossRefGoogle Scholar
  25. 25.
    Marom Z, Shelhamer JH, Bach MK, Morton DR, Kaliner MA (1982) Slow releasing substances, leukotriene C4 and D4, increase the release of mucus from human airways in vitro. Am Rev Respir Dis 126: 449–451PubMedGoogle Scholar
  26. 26.
    Rieves RD, Lundgren JD, Logun, C, Wu T, Shelhamer J (1991) Effect of protein kinase C activating agents on respiratory glycoconjugate release from feline airways. Am J Physiol L415–L423Google Scholar
  27. 27.
    Sommerhof CP, Caughey GH, Finkbeiner WE, Lazarus SC, Basbaum CB, Nadel JA (1989) Mast cell chymase: a potent secretagogue for airway gland serous cells. J Immunol 142: 2450–2456Google Scholar
  28. 28.
    Phipps RJ, Denas SM, Wanner A (1983) Antigen stimulates glycoprotein secretion and alters ion fluxes in sheep trachea. J Appl Physiol 55: 1593–1602PubMedGoogle Scholar
  29. 29.
    Adler KB, Holden-Stauffer WJ, Repine JE (1990) Oxygen metabolites stimulate release of high molecular weight glycoconjugates by cell and organ cultures of rodent respiratory epithelium via an arachidonic acid-dependent mechanism. J Clin Invest 85: 75–79PubMedCrossRefGoogle Scholar
  30. 30.
    Lundgren JD, Davey RT, Lundgren B et al (1991) Eosinophil cationic protein stimulates and major basic protein inhibits airway mucus secretion. J Allergy Clin Immunol 87: 689–698PubMedCrossRefGoogle Scholar
  31. 31.
    Metzger WJ, Zavala D, Richardson J et al (1987) Local allergen challange and bronchial lavage of allergic asthmatic lungs: description of the model and local airway inflammation. Am Rev Respir Dis 135: 433–440PubMedGoogle Scholar
  32. 32.
    Lundgren JD, Rieves RD, Mullol J, Logun C, Shelhamer JH (1994) The effect of neutrophil protease enzymes on the release of mucus from feline and human airway cultures. Resp Med (in press)Google Scholar
  33. 33.
    Dunnill MS (1960) The pathology of asthma, with special reference to changes in the bronchial mucosa. J Clin Pathol 13: 27–33PubMedCrossRefGoogle Scholar
  34. 34.
    Gollub EG, Goswami SK, Sperber K, Marom Z (1992) Isolation and char-acterization of a macrophage-derived high molecular weight protein invol-ved in the regulation of mucus-like glycoconjugate secretion. J Allergy Clin Immunol 89: 696–701PubMedCrossRefGoogle Scholar
  35. 35.
    O’Driscoll BR, Taylor RJ, Horsley MG, Chambers DU, Bernstein A (1989) Nebulized salbutamol with and without ipratropium bromide in acute airflow obstruction. Lancet i: 1418–1420Google Scholar
  36. 36.
    Laitinen LA, Laitinen A, Heino M, Haahtela T (1991) Eosinophihc airway inflammation during exacerbation of asthma and its treatment with inhaled corticosteroid. Am Rev Respir Dis 143: 423–427PubMedGoogle Scholar
  37. 37.
    Ford-Hutchinson AW (1991) FLAP: A novel drug target for inhibiting the synthesis of leukotrienes. Trends Pharmacol Sci 21: 68–70CrossRefGoogle Scholar
  38. 38.
    Sommerhoff CP, Krell RD, Williams JL, Gomes BC, Strimpler AM, Nadel JA (1991) Inhibition of human neutrophil elastase by ICI 200, 355. Eur J Pharmacol 193: 153–158PubMedCrossRefGoogle Scholar
  39. 39.
    Sullivan P, Bekir S, Jaffar Z, Page C, Jeffery P, Costello J (1994) Anti-inflammatory effects of low-dose oral theophylline in atopic asthma. Lancet 343: 1006–1008PubMedCrossRefGoogle Scholar
  40. 40.
    Fuchs HJ, Borowitz DS, Christiansen DH et al (1994) Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N Engl J Med 331: 637–642PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • J. D. Lundgren
    • 1
  1. 1.Department of Infectious Diseases (7722)University State HospitalCopenhagen NDenmark

Personalised recommendations