Advertisement

Asthma pp 59-69 | Cite as

Epithelium under stress

  • W. R. Pohl
  • D. J. Romberger

Summary

Cultured bovine bronchial epithelial cells respond to thermal stress with induction of HSP 70 and this stress is associated with increased fibronectin release. We conclude that epithelial cells are capable of responding to stress and that altered release of mediators involved in repair may be part of the stress response. TGF-p may modulate HSP 70 expression, to which extent, however, needs further evaluation.

Epithelial cells play an important role in inflammatory processes such asthma and chronic bronchitis having the potential to communicate with a number of immune cells in order to help direct the inflammatory response.

In this context, epithelial cells influence processes in the airways including smooth muscle tone, inflammation, repair and fibrosis. Improved understanding of the role of epithelial cells in airway diseases will provide the means for more specific direction of new therapeutic strategies.

Keywords

Heat Shock Protein Bronchial Epithelial Cell Airway Epithelial Cell Human Bronchial Epithelial Cell Smooth Muscle Tone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Epithel unter Stress. Atemwegserkrankungen wie die chronische Bronchitis und das Asthma sind durch wiederholte Episoden der Atemwegsentzündung gekennzeichnet. Der Mechanismus bei der Reparation der entzündlichen Schäden ist heute noch weitgehend unklar, spielt aber eine Schlüsselrolle darin, ob bleibende Schäden wie die subepitheliale Fibrose sich entwickeln werden oder nicht. Moderne Konzepte deuten darauf hin, daß die Migration, Proliferation und Differenzierung der Atemwegsepithelien für die Reparation einer verletzten Oberfläche von essentieller Bedeutung sind.

Fibronektin, ein extrazelluläres Matrixglykoprotein, spielt eine bereits gut definierte Rolle bei zelluären Prozessen, welche für Reparationsmechanismen Bedeutung haben.

Hitzeschockproteine (HSPs, Streßprotein) werden in Säugetierzellen gebildet, wenn dieselben auf eine Reihe von Streßsituationen reagieren, wie etwa Hyperthermie, Hypoxie, Ischaemie und oxydative Schädigung. Bei Menschen zählt die Familie der 70 kD HSP zu den prominentesten Vertretern der Hitzeschockproteine.

HSPs sind jüngst im Atemwegsepithel gefunden worden, wo sie wohl eine weitere Schutzfunktion gegenüber Streß ausüben. In weiterer Folge konnte gezeigt werden, daß TGF-beta die Produktion von HSP vermehrt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    34th Annual Thomas L (1992) Petty Aspen Lung Conference. Chest 101 (3) [Suppl]: 2–85Google Scholar
  2. 2.
    Lung Biology in Health and Disease. The Airway Epithelium. Lenfant C (ed) Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T (1985) Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131: 599–606PubMedGoogle Scholar
  4. 4.
    Dunnill MS (1960) The pathology of asthma, with special reference to changes in the bronchial mucosa. J Clin Path 13: 27–33PubMedCrossRefGoogle Scholar
  5. 5.
    Lane BP, Gordon R (1974) Regeneration of rat tracheal epithelium after mechanical injury. Proc Soc Exp Biol Med 145: 1139–1144PubMedGoogle Scholar
  6. 6.
    McDowell EM, Ben T, Newkirk C, Chang S, DeLuca LM (1987) Differentiation of tracheal mucociliary epithelium in primary cell culture recapitulates normal fetal development and regeneration following injury in hampsters. Am J Pathol 129: 511–522PubMedGoogle Scholar
  7. 7.
    Rutten MJ, Ito S (1983) Morphology and electrophysiology of guinea pig gastric mucosal repair in vitro. Am J Physiol 244: 171–182Google Scholar
  8. 8.
    Moore R, Carlson S, Madara JL (1989) Rapid barrier restitution in an vitro model of intestinal epithelial injury. Lab Invest 60: 237–244PubMedGoogle Scholar
  9. 9.
    Jordana M, Clancy R, Dolovich J, Denburg J (1992) Effector role of the epithelial compartment in inflammation. Annals of the New York Academy of Sciences 664: 180–189PubMedCrossRefGoogle Scholar
  10. 10.
    Churchill L, Chilton FH, Resau JH, Bascom R, Hubbard WC, Proud D (1989) Cyclooxygenase metabolism of endogenous arachidonic acid by cultured human tracheal epithelial cells. Am Rev Respir Dis 140: 449–459PubMedCrossRefGoogle Scholar
  11. 11.
    Mattoli S, Marini M, Fasoli A (1992) Expression of the potent inflammatory cytokines, GM-CSF, IL6, and IL8, in bronchial epithelial cells of asthmatic patients. Chest 101 (3) [Suppl]: 27–29Google Scholar
  12. 12.
    Koyama S, Rennard SI, Leikauf GD, Shoji S, VonEssen S, Claassen L, Robbins RA (1991) Endotoxin stimulates bronchial epithelial cells to release chemotactic factors for neutrophils. J Immunol 147: 4293–4301PubMedGoogle Scholar
  13. 13.
    Holtzman MJ, Hansbrough JR, Rosen GD, Turk J. Uptake release and novel species-dependent oxygenation of arachidonic acid in human and animal airway epithelial cells. Biochem Biophys Acta 963: 401–413Google Scholar
  14. 14.
    Noah TL, Paradiso AM, Madden MC, McKinnon KP, Devlin RB (1991) The response of a human bronchial epithelial cell line to histamine: intracellular calcium changes and extracellular release of inflammatory mediators. Am J Respir Cell Mol Biol 5: 484 - 492PubMedGoogle Scholar
  15. 15.
    Heeger P, Wolf G, Meyers C, Sun MJ, O*#x2019;Farrell SC, Krensky AM, Neilson EG (1992) Isolation and characterization of cDNA from renal tubular epithelium encoding murine RANTES. Kidney Intl 41: 220–225CrossRefGoogle Scholar
  16. 16.
    Standiford TJ, Kunkel SL, Basha MA, Chensue SW, Lynch JP, III, Toews GB, Westwick J, Stricter RM (1990) Interleukin-8 gene expression by a pulmonary epithelial cell line: a model for cytokine networks in the lung. J Clin Invest 86: 1945–1953PubMedCrossRefGoogle Scholar
  17. 17.
    Standiford TJ, Rolfe MW, Kunkel SL, Lynch III JJP, Burdick MD, Gilbert AR, Orringer MB, Whyte RI, Stricter RM (1993) Macrophage inflammatory protein-1 alpha expression in interstitial lung disease. J Immunol 151: 2852PubMedGoogle Scholar
  18. 18.
    Ohtoshi T, Vancheri C, Cox G, Gauldie J, Dolovich J, Denburg JA, Jordana M (1991) Monocyte-macrophage differentiation induced by human upper airway epithelial cells. Am J Respir Cell Mole Biol 4: 255–263Google Scholar
  19. 19.
    Ohtoshi T, Tsuda T, Vancheri C, Abrams JS, Gauldie J, Dolovich J, Denburg JA, Jordana M (1991) Human upper airway epithehal cell-derived granulocyte-macrophage colonystimulating factor induces histamine-containing cell differentiation of human progenitor cells. Int Arch Allergy Appl Immunol 95: 376–384PubMedCrossRefGoogle Scholar
  20. 20.
    Marini M, Soloperto M, Mezzetti M, Fasoli A, Mattoli S (1991) Interleukin- 1 binds to specific receptors on human bronchial epithelial cells and upregulates granulocyte/macrophage colony-stimulating factor synthesis and release. Am J Respir Cell Mol Biol 4: 519–524PubMedGoogle Scholar
  21. 21.
    Rothlein R, Czajkowski M, O’Neill MM, Marlin SD, Mainolfi E, Merluzzi VJ (1988) Induction of intercellular adhesion molecule 1 on primary and continuous cell lines by pro-inflammatory cytokines. J Immunol 141: 1665–1669PubMedGoogle Scholar
  22. 22.
    Wegner CD, Gundel RH, Reilly P, Haynes N, Letts LG, Rothlein R (1990) Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 2: 456–459CrossRefGoogle Scholar
  23. 23.
    Tosi MF, Stark JM, Hamedani A, Smith CW, Gruenerts DC, Huang YT (1992) Intercellular adhesion molecule-1 (ICAM-l)dependent and ICAM-1- independent adhesive interactions between polymorphonuclear leukocytes and human airway epithelial cells infected with parainfluenza virus type 2. J Immunol 149: 3345–3349PubMedGoogle Scholar
  24. 24.
    Nickoloff BJ, Turka LA (1993) Keratinocytes: key immunocytes of the integument. Am J Pathol 143 (2): 325–331PubMedGoogle Scholar
  25. 25.
    Keenan KP, Wilson TS, McDowell EM (1983) Regeneration of hamster tracheal epithelium after mechanical injury. IV. Histochemical, immuno- cytochemical and ultrastructural studies. Virchows Arch (Cell Pathol) 43: 213–240CrossRefGoogle Scholar
  26. 26.
    McGowan S (1992) Extracellular matrix and the regulation of lung development and repair. FASEB J 6: 2895–2904PubMedGoogle Scholar
  27. 27.
    Grinnell F, Billingham RE, Burgess L (1981) Distribution of fibronectin during wound healing in vivo. J Invest Dermatol 76: 181–189PubMedCrossRefGoogle Scholar
  28. 28.
    Romberger DJ, Beckmann JD, Claassen L, Ertl RE, Rennard SI (1992) Modulation of fibronectin production of bovine bronchial epithelial cells by transforming growth factor-ß. Am J Respir Cell Mol Biol 7: 149–155PubMedGoogle Scholar
  29. 29.
    Stoner GD, Katoh Y, Eoidart JM, Trump BE, Steinert PM, Harris CC (1981) Cultured human bronchial epithelial cells: blood group antigens, keratin, collagens, and fibronectin. In Vitro 17 (7): 577–587PubMedCrossRefGoogle Scholar
  30. 30.
    Shoji S, Ertl RE, Linder J, Romberger DJ, Rennard SI (1990) Bronchial epithelial cells produce chemotactic activity for bronchial epithelial cells. Am Rev Respir Dis 141: 218–225PubMedGoogle Scholar
  31. 31.
    Morle A, Zhang Z, Ruoslahti E (1994) Superfibronectin is a functionally distinct form of fibronectin. Nature 367: 193–196CrossRefGoogle Scholar
  32. 32.
    Ruoslahti E (1988) Fibronectin and its receptors. Annu Rev Biochem 57: 375–413PubMedCrossRefGoogle Scholar
  33. 33.
    Wang A, Cohen DS, Palmer E, Sheppard D (1991) Polarized regulation of fibronectin secretion and alternative splicing by transforming growth factor ß. J Biol Chem 266: 15598–15601PubMedGoogle Scholar
  34. 34.
    Sacco O, Romberger D, Rizzino A, Beckmann J, Rennard SI, Spurzem J (1992) Spontaneous production of TGF-ß2 by primary cultures of bronchial epithelial cells: effects on cell behavior in vitro. J Clin Invest 90: 1379–1385PubMedCrossRefGoogle Scholar
  35. 35.
    Border W, Ruoslahti E (1992) Transforming growth factor-ß in disease: the dark side of tissue repair. J Clin Invest 90: 1–7PubMedCrossRefGoogle Scholar
  36. 36.
    Spurzem JR, Sacco O, Rickard KA, Rennard SI (1993) Transforming growth factor-beta increases adhesion but not migration of bovine bronchial epithelial cells to matrix proteins. J Lab Clin Med 122: 92–102PubMedGoogle Scholar
  37. 37.
    Bonay M, Soler P, Riquet M, Battesti JP, Hance AJ, Tozi A (1994) Expression of heat shock proteins in human lung and lung cancer. Am J Respir Cell Mol Biol 10: 453–461PubMedGoogle Scholar
  38. 38.
    Polla SP (1988) A role for heat shock proteins in inflammation. Immunology Today 9: 134–137PubMedCrossRefGoogle Scholar
  39. 39.
    Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259: 1409–1410PubMedCrossRefGoogle Scholar
  40. 40.
    Takenaka J, Hightower LE (1992) Transforming growth factor-ßl rapidly induces Hsp70 and Hsp90 molecular chaperous in cultured chicken embryo cells. J Cell Biol 152: 568–577Google Scholar
  41. 41.
    Prouse B, Pladsen P, Pohl W, Rennard SI, Romberger DJ (1994) Thermal stress induces bronchial epithelial cell heat shock protein expression and fibronectin release. Resp Crit Care Med 149: 996Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • W. R. Pohl
    • 1
  • D. J. Romberger
    • 2
  1. 1.II. Medizinische AbteilungWilhelminenspitalWienAustria
  2. 2.University of Nebraska, Med. Ctr.OmahaUSA

Personalised recommendations