Asthma pp 23-33 | Cite as

The eosinophil and neutrophil granulocyte in asthma

  • Per Venge
Conference paper


The eosinophil and the neutrophil granulocytes are two potentially very destructive cells, which may cause a lot of damage to the tissue when attracted to the wrong place at the wrong time. The presence and activation of eosinophils in asthma is well established, whereas a role of the neutrophil is less certain with the possible exception of occupational asthma. The mechanisms that may regulate the selective accumulation of either cell in the tissue probably involve the exposure of specific adhesion molecules on. the endothelial cells, whereas the presence of chemotactic signals are necessary for the guidance of any of the cells in the tissue.


Allergy Clin Immunol Allergic Asthma Eosinophil Cationic Protein Occupational Asthma Neutrophil Granulocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Der eosinophile und neutrophile Granulozyt beim Asthma


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruynzeel PLB, Kok PTM, Hamelink ML, Kijne AM, Verhagen J (1985) Exclusive leukotriene C4 synthesis by purified human eosinophils induced by opsonized zymosan. FEBS Letters 189 (2): 350–354PubMedCrossRefGoogle Scholar
  2. 2.
    Shaw RI, Cromwell O, Kay AB (1984) Preferential generation of leukotriene C4 by human eosinophils. Clin Exp Immunol 56: 716–722PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee TC, Lenihan DJ, Malone B, Roddy LL, Wasserman SI (1984) Increased biosynthesis of platelet-activating factor in activated human eosinophils. J Biol Chem 259: 5526–5530PubMedGoogle Scholar
  4. 4.
    Carlson MGCh, Peterson CGB, Venge P (1985) Human eosinophil peroxidase: purification and characterization. J Immunol 134: 1875–1879PubMedGoogle Scholar
  5. 5.
    Peterson CGB, Venge P (1983) Purification and characterization of a new cationic protein — eosinophil protein-x ( EPX) — from granules of human eosinophils. Immunology 50: 19–26Google Scholar
  6. 6.
    Hällgren R, Venge P (1991) The eosinophil in inflammation. In: Matsson P, Ahlstedt S, Venge P, Thorell J (eds) Clinical impact of the monitoring of allergic inflammation. London, San Diego: Academic Press, pp 119–140Google Scholar
  7. 7.
    Gleich GJ, Adolphson CR (1986) The eosinophil leukocyte: structure and function. Adv Immunol 39: 177–253PubMedCrossRefGoogle Scholar
  8. 8.
    Weller PF, Bach DS, Austen KF (1984) Biochemical characterization of human eosinophil charcot-leyden crystal protein lysophospholipase. J Biol Chem 259: 15100–15105PubMedGoogle Scholar
  9. 9.
    Venge P, Peterson CGB (1989) Eosinophil biochemistry and killing mechanisms. In: Morley J, Colditz I (eds) Eosinophils in asthma. New York, London: Academic Press, pp 163–177Google Scholar
  10. 10.
    Ding-E Young J, Peterson CGB, Venge P, Cohn ZA (1986) Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321: 613–616CrossRefGoogle Scholar
  11. 11.
    Hemäs J, Sämstrand B, Lindroth P, Peterson CGB, Venge P, Malmström A (1993) Eosinophil cationic protein alters proteoglycan metabolism in human lung fibroblast cultures. Eur J Cell Biol (in press)Google Scholar
  12. 12.
    Lundgren JD, Davey RTjr, Lundgren B, Mullol J, Marom Z, Logun C, Baraniuk J, Kaliner MA, Shelhamer JH (1991) Eosinophil cationic protein stimulates and major basic protein inhibits airway mucus secretion. J Allergy Clin Immunol 87: 689–698PubMedCrossRefGoogle Scholar
  13. 13.
    Kimata H, Yoshida A, Ishioka C, Jiang Y, Mikawa H (1992) Human B-cell growth-inhibitory activity of eosinophil cationic protein. Biotechnol Ther 3: 137–149PubMedGoogle Scholar
  14. 14.
    Venge P, Dahl R, Hällgren R (1979) Enhancement of factor XII dependent reactions by eosinophil cationic protein. Thromb Res 14: 641–649PubMedCrossRefGoogle Scholar
  15. 15.
    Dahl R, Venge P (1979) Enhancement of urokinase-induced plasminogen activation by the cationic protein of human granulocytes. Thromb Res 14: 599–608PubMedCrossRefGoogle Scholar
  16. 16.
    Gullberg U, Widegren B, Amason U, Egesten A, Olsson I (1986) The cytotoxic eosinophil cationic protein ( ECP) has ribunoclease activity. Biochem Biophys Res Commun 139: 1239–1242Google Scholar
  17. 17.
    Henderson WR, Jörg A, Klebanoff SJ (1982) Eosinophil peroxidase-mediated inactivation of leukotrienes B4, C4 and D4. J Immunol 128: 2609–2613PubMedGoogle Scholar
  18. 18.
    Rohrbach MS, Wheatley CL, Slifman NR, Gleich GJ (1990) Activation of platelets by eosinophil granule proteins. J Exp Med 172: 1271–1274PubMedCrossRefGoogle Scholar
  19. 19.
    Henderson WR, Chi EY, Klebanoff SJ (1980) Eosinophil peroxidase-induced mast cell secretion. J Exp Med 152: 265–279PubMedCrossRefGoogle Scholar
  20. 20.
    Durham SR, Loegering DA, Dunnette S, Gleich GJ, Kay AB (1989) Blood eosinophils and eosinophil-derived proteins in allergic asthma. J Allergy Clin Immunol 84: 1–14CrossRefGoogle Scholar
  21. 21.
    Gleich GJ (1990) The eosinophil and bronchial asthma: Current understanding. J Allergy Clin Immunol 85 (2): 422–436PubMedCrossRefGoogle Scholar
  22. 22.
    Gundel RH, Letts LG, Gleich GJ (1991) Human eosinophil major basic protein induces airway constriction and airway hypen-esponsiveness in primates. J Clin Invest 87: 1470–1473PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    White SR, Ohno S, Munoz NM, Gleich GJ, Abrahams C, Solway J, Leff AR (1990) Epithelium-dependent contraction of airway smooth muscle caused by eosinophil MBP. Am J Physiol Lung Cell Mol Physiol 259: L294 — L303Google Scholar
  24. 24.
    Moy JN, Gleich GJ, Thomas LL (1990) Noncytotoxic activation of neutrophils by eosinophil granule major basic protein: Effect on superoxide anion generation and lysosomal enzyme release. J Immunol 145: 2626–2632Google Scholar
  25. 25.
    Kita H, Ohnishi T, Okubo Y, Weiler D, Abrams JS, Gleich GJ (1991) Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils. J Exp Med 174: 745–748PubMedCrossRefGoogle Scholar
  26. 26.
    Desreumaux P, Janin A, Colombel JF, Prin L, Plumas J, Emilie D, Torpier G, Capron A, Capron M (1992) Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease. J Exp Med 175: 293–296PubMedCrossRefGoogle Scholar
  27. 27.
    Wong DTW, Elovic A, Matossian K, Nagura N, McBride J, Chou MY, Gordon JR, Rand TH, Galli SJ, Weller PF (1991) Eosinophils from patients with blood eosinophilia express transforming growth factor 131. Blood 78: 2702–2707PubMedGoogle Scholar
  28. 28.
    Moqbel R, Hamid Q, Ying S, Barkans J, Hartnell A, Tsicopoulos A, Wardlaw AJ, Kay AB (1991) Expression of mRNA and immunoreactivity for the granulocyte/macrophage colony-stimulating factor in activated human eosinophils. J Exp Med 174: 749–752PubMedCrossRefGoogle Scholar
  29. 29.
    Venge P, Bergstrand H, Hdkansson L (1992) Neutrophils and eosinophils. In: Kelley Harris, Ruddy Sledge (eds) Textbook of rheumatology. Philadelphia: W. B. SaundersGoogle Scholar
  30. 30.
    Odeberg H, Olsson I, Venge P (1975) Cationic proteins of human granulocytes. IV Esterase activity. Lab Invest 32: 86–90Google Scholar
  31. 31.
    Odeberg H, Olsson 1(1975) Antibacterial activity of cationic proteins from human granulocytes. J Clin Invest 56: 1118–1124Google Scholar
  32. 32.
    Janoff A (1972) Human granulocyte elastase further delineation of its role in connective tissue damage. Am J Pathol 68 (3): 579–591PubMedPubMedCentralGoogle Scholar
  33. 33.
    Watorek W, Farley D, Salvesen G, Travis J (1988) Neutrophil elastase and cathepsin G: Structure, function, and biological control. Adv Exp Med Biol 240: 23–31Google Scholar
  34. 34.
    Eriksson S 0978) Review article Proteases and protease inhibitors in chronic obstructive lung disease. Acta Med Scand 203: 449–455Google Scholar
  35. 35.
    Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidahl JR (1988) Proteinase 3 A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J Clin Invest 82: 1963–1973PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Schultz J (1980) Myeloperoxidase. In: Sbarra AJ, Strauss RR (eds) The reticuloendothelial system. A comprehensive treatise. 2. Biochemistry and metabolism. New York: Plenum Press, pp 231–253Google Scholar
  37. 37.
    Thomas EL, Jefferson MM, Grisham MB (1982) Myeloperoxidase-catalyzed incorporation of amines into proteins: Role of hypochlorus acid and dichloramines. Biochemistry 21: 6299–6308Google Scholar
  38. 38.
    Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365–376PubMedCrossRefGoogle Scholar
  39. 39.
    Lehrer RI, Ganz T (1990) Antimicrobial polypeptides of human neutrophils. Blood 76: 2169–2181PubMedGoogle Scholar
  40. 40.
    Spitznagel JK (1990) Antibiotic proteins of human neutrophils. J Clin Invest 86: 1381–1386PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lehrer RI, Barton A, Daher KA, Harwig SSL, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84: 553–561Google Scholar
  42. 42.
    Daher K, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60: 1068–1074PubMedPubMedCentralGoogle Scholar
  43. 43.
    Campanelli D, Detmers PA, Nathan CF, Gabay JE (1990) Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties. J Clin Invest 85: 904–915Google Scholar
  44. 44.
    Weiss J, Kao L, Victor M, Elsbach P (1985) Oxygen-independent intracellular and oxygen-dependent extracellular killing of escherichia coli S15 by human polymorphonuclear leukocytes. J Clin Invest 76: 206–212PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Reiter B (1983) The biological significance of lactoferrin. Int J Tiss Reac 5: 87–96Google Scholar
  46. 46.
    Osserman EF (1975) Lysozyme. N Engl J Med 293: 424–425CrossRefGoogle Scholar
  47. 47.
    Konstan MW, Chen PW, Sherman JM, Thomassen MJ, Wood RE, Boat TF (1981) Human lung lysozyme: Sources and properties. Am Rev Respir Dis 123: 120–124Google Scholar
  48. 48.
    DeMonchy JGR, Kauffman HF, Venge P, Koeter GH, Jansen HM, Sluiter HJ, DeVries K (1985) Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am Rev Respir Dis 131: 373–376Google Scholar
  49. 49.
    Bousquet J, Chanez P, Lacoste JY, Barnéon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, Michel F-B (1990) Eosinophilic inflammation in asthma. N Engl J Med 323: 1033–1039PubMedCrossRefGoogle Scholar
  50. 50.
    Tai P-C, Spry CJF, Petterson C, Venge P, Olsson I (1984) Monoclonal antibodies distinguish between storage and secreted forms of eosinophil cationic protein. Nature 309: 182–184PubMedCrossRefGoogle Scholar
  51. 51.
    Ädelroth E, Rosenhall L, Johansson S-A, Linden M, Venge P (1990) Inflammatory cells and eosinophilic activity in asthmatics investigated by bronchoalveolar lavage: The effects of antiasthmatic treatment with Budesonide or Terbutaline. Am Rev Respir Dis 142: 91–99Google Scholar
  52. 52.
    Rak S, Björnson A, H$kanson L, Sörenson S, Venge P (1991) The effect of immunotherapy on eosinophil accumulation and production of eosinophil chemotactic activity in the lung of subjects with asthma during natural pollen exposure. J Allergy Clin Immunol 88: 878–888PubMedCrossRefGoogle Scholar
  53. 53.
    Fabbri LM, Boschetto P, Zocca E, Milani G, Pivirotto F, Plebani M, Burli-na A, Licata B, Mapp CE (1987) Bronchoalveolar neutrophilia during late asthmatic reactions induced by toluene diisocyanate. Am Rev Respir Dis 136: 36–42PubMedCrossRefGoogle Scholar
  54. 54.
    Metzger WJ, Zavala D, Richerson HB, Moseley P, Iwamota P, Monick M, Sjoerdsma K, Hunninghake GW (1987) Local allergen challenge and bronchoalveolar lavage of allergic asthmatic lungs. Description of the model of local airway inflammation. Am Rev Respir Dis 135: 433–440PubMedGoogle Scholar
  55. 55.
    Lam S, LeRiche J, Phillips D, Chan-Yeung M (1987) Cellular and protein changes in bronchial lavage fluid after late asthmatic reaction in patients with red cedar asthma. J Allergy Clin Immunol 80: 44–50PubMedCrossRefGoogle Scholar
  56. 56.
    Bradley BL, Azzawi M, Jacobson M, Assoufi B, Collins JV, Irani A-MA, Schwartz LB, Durham SR, Jeffery PK, Kay AB (1991) Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: Comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J Allergy Clin Immunol 88: 661–674PubMedCrossRefGoogle Scholar
  57. 57.
    Bousquet J, Chanez P, Lacoste JY, Enander I, Venge P, Peterson C, Ahlstedt S, Michel F-B, Godard P (1991) Indirect evidence of bronchial inflammation assessed by titration of inflammatory mediators in BAL fluid of patients with asthma. J Allergy Clin Immunol 88: 649–660PubMedCrossRefGoogle Scholar
  58. 58.
    Venge P, Hakansson L (1991) The eosinophil and asthma. In: Kaliner M, Barnes PJ, Persson CGA (eds) Asthma. Its pathology and treatment. New York, Basel, Hong Kong: Marcel Dekker, pp 477–502Google Scholar
  59. 59.
    Venge P, Hakansson L (1991) Current understanding of the role of the eosinophil granulocyte in asthma. Clin Exp Allergy 21 [Suppl] 3: 31–37CrossRefGoogle Scholar
  60. 60.
    Schleimer RP, Sterbinsky SA, Kaiser J, Bickel CA, Klunk DA, Tomioka K, Newman W, Luscinskas FW, Gimbrone MA jr, McIntyre BW, Bochner BS (1992) IL-4 induces adherence of human eosinophils and basophile but not neutrophils to endothelium: Association with expression of VCAM-1. J Immunol 148: 1086–1092PubMedGoogle Scholar
  61. 61.
    Hakansson L, Carlson M, Stalenheim G, Venge P (1990) Migratory responses of eosinophil and neutrophil granulocytes from patients with asthma. J Allergy Clin Immunol 85: 743–750PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Per Venge
    • 1
  1. 1.Asthma Research Centre, Department of Clinical ChemistryUniversity HospitalUppsalaSweden

Personalised recommendations