Skip to main content

The eosinophil and neutrophil granulocyte in asthma

Der eosinophile und neutrophile Granulozyt beim Asthma

  • Conference paper
Book cover Asthma
  • 72 Accesses

Summary

The eosinophil and the neutrophil granulocytes are two potentially very destructive cells, which may cause a lot of damage to the tissue when attracted to the wrong place at the wrong time. The presence and activation of eosinophils in asthma is well established, whereas a role of the neutrophil is less certain with the possible exception of occupational asthma. The mechanisms that may regulate the selective accumulation of either cell in the tissue probably involve the exposure of specific adhesion molecules on. the endothelial cells, whereas the presence of chemotactic signals are necessary for the guidance of any of the cells in the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruynzeel PLB, Kok PTM, Hamelink ML, Kijne AM, Verhagen J (1985) Exclusive leukotriene C4 synthesis by purified human eosinophils induced by opsonized zymosan. FEBS Letters 189 (2): 350–354

    Article  PubMed  CAS  Google Scholar 

  2. Shaw RI, Cromwell O, Kay AB (1984) Preferential generation of leukotriene C4 by human eosinophils. Clin Exp Immunol 56: 716–722

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Lee TC, Lenihan DJ, Malone B, Roddy LL, Wasserman SI (1984) Increased biosynthesis of platelet-activating factor in activated human eosinophils. J Biol Chem 259: 5526–5530

    PubMed  CAS  Google Scholar 

  4. Carlson MGCh, Peterson CGB, Venge P (1985) Human eosinophil peroxidase: purification and characterization. J Immunol 134: 1875–1879

    PubMed  CAS  Google Scholar 

  5. Peterson CGB, Venge P (1983) Purification and characterization of a new cationic protein — eosinophil protein-x ( EPX) — from granules of human eosinophils. Immunology 50: 19–26

    Google Scholar 

  6. Hällgren R, Venge P (1991) The eosinophil in inflammation. In: Matsson P, Ahlstedt S, Venge P, Thorell J (eds) Clinical impact of the monitoring of allergic inflammation. London, San Diego: Academic Press, pp 119–140

    Google Scholar 

  7. Gleich GJ, Adolphson CR (1986) The eosinophil leukocyte: structure and function. Adv Immunol 39: 177–253

    Article  PubMed  CAS  Google Scholar 

  8. Weller PF, Bach DS, Austen KF (1984) Biochemical characterization of human eosinophil charcot-leyden crystal protein lysophospholipase. J Biol Chem 259: 15100–15105

    PubMed  CAS  Google Scholar 

  9. Venge P, Peterson CGB (1989) Eosinophil biochemistry and killing mechanisms. In: Morley J, Colditz I (eds) Eosinophils in asthma. New York, London: Academic Press, pp 163–177

    Google Scholar 

  10. Ding-E Young J, Peterson CGB, Venge P, Cohn ZA (1986) Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321: 613–616

    Article  Google Scholar 

  11. Hemäs J, Sämstrand B, Lindroth P, Peterson CGB, Venge P, Malmström A (1993) Eosinophil cationic protein alters proteoglycan metabolism in human lung fibroblast cultures. Eur J Cell Biol (in press)

    Google Scholar 

  12. Lundgren JD, Davey RTjr, Lundgren B, Mullol J, Marom Z, Logun C, Baraniuk J, Kaliner MA, Shelhamer JH (1991) Eosinophil cationic protein stimulates and major basic protein inhibits airway mucus secretion. J Allergy Clin Immunol 87: 689–698

    Article  PubMed  CAS  Google Scholar 

  13. Kimata H, Yoshida A, Ishioka C, Jiang Y, Mikawa H (1992) Human B-cell growth-inhibitory activity of eosinophil cationic protein. Biotechnol Ther 3: 137–149

    PubMed  CAS  Google Scholar 

  14. Venge P, Dahl R, Hällgren R (1979) Enhancement of factor XII dependent reactions by eosinophil cationic protein. Thromb Res 14: 641–649

    Article  PubMed  CAS  Google Scholar 

  15. Dahl R, Venge P (1979) Enhancement of urokinase-induced plasminogen activation by the cationic protein of human granulocytes. Thromb Res 14: 599–608

    Article  PubMed  CAS  Google Scholar 

  16. Gullberg U, Widegren B, Amason U, Egesten A, Olsson I (1986) The cytotoxic eosinophil cationic protein ( ECP) has ribunoclease activity. Biochem Biophys Res Commun 139: 1239–1242

    Google Scholar 

  17. Henderson WR, Jörg A, Klebanoff SJ (1982) Eosinophil peroxidase-mediated inactivation of leukotrienes B4, C4 and D4. J Immunol 128: 2609–2613

    PubMed  CAS  Google Scholar 

  18. Rohrbach MS, Wheatley CL, Slifman NR, Gleich GJ (1990) Activation of platelets by eosinophil granule proteins. J Exp Med 172: 1271–1274

    Article  PubMed  CAS  Google Scholar 

  19. Henderson WR, Chi EY, Klebanoff SJ (1980) Eosinophil peroxidase-induced mast cell secretion. J Exp Med 152: 265–279

    Article  PubMed  CAS  Google Scholar 

  20. Durham SR, Loegering DA, Dunnette S, Gleich GJ, Kay AB (1989) Blood eosinophils and eosinophil-derived proteins in allergic asthma. J Allergy Clin Immunol 84: 1–14

    Article  Google Scholar 

  21. Gleich GJ (1990) The eosinophil and bronchial asthma: Current understanding. J Allergy Clin Immunol 85 (2): 422–436

    Article  PubMed  CAS  Google Scholar 

  22. Gundel RH, Letts LG, Gleich GJ (1991) Human eosinophil major basic protein induces airway constriction and airway hypen-esponsiveness in primates. J Clin Invest 87: 1470–1473

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. White SR, Ohno S, Munoz NM, Gleich GJ, Abrahams C, Solway J, Leff AR (1990) Epithelium-dependent contraction of airway smooth muscle caused by eosinophil MBP. Am J Physiol Lung Cell Mol Physiol 259: L294 — L303

    CAS  Google Scholar 

  24. Moy JN, Gleich GJ, Thomas LL (1990) Noncytotoxic activation of neutrophils by eosinophil granule major basic protein: Effect on superoxide anion generation and lysosomal enzyme release. J Immunol 145: 2626–2632

    Google Scholar 

  25. Kita H, Ohnishi T, Okubo Y, Weiler D, Abrams JS, Gleich GJ (1991) Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils. J Exp Med 174: 745–748

    Article  PubMed  CAS  Google Scholar 

  26. Desreumaux P, Janin A, Colombel JF, Prin L, Plumas J, Emilie D, Torpier G, Capron A, Capron M (1992) Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease. J Exp Med 175: 293–296

    Article  PubMed  CAS  Google Scholar 

  27. Wong DTW, Elovic A, Matossian K, Nagura N, McBride J, Chou MY, Gordon JR, Rand TH, Galli SJ, Weller PF (1991) Eosinophils from patients with blood eosinophilia express transforming growth factor 131. Blood 78: 2702–2707

    PubMed  CAS  Google Scholar 

  28. Moqbel R, Hamid Q, Ying S, Barkans J, Hartnell A, Tsicopoulos A, Wardlaw AJ, Kay AB (1991) Expression of mRNA and immunoreactivity for the granulocyte/macrophage colony-stimulating factor in activated human eosinophils. J Exp Med 174: 749–752

    Article  PubMed  CAS  Google Scholar 

  29. Venge P, Bergstrand H, Hdkansson L (1992) Neutrophils and eosinophils. In: Kelley Harris, Ruddy Sledge (eds) Textbook of rheumatology. Philadelphia: W. B. Saunders

    Google Scholar 

  30. Odeberg H, Olsson I, Venge P (1975) Cationic proteins of human granulocytes. IV Esterase activity. Lab Invest 32: 86–90

    Google Scholar 

  31. Odeberg H, Olsson 1(1975) Antibacterial activity of cationic proteins from human granulocytes. J Clin Invest 56: 1118–1124

    Google Scholar 

  32. Janoff A (1972) Human granulocyte elastase further delineation of its role in connective tissue damage. Am J Pathol 68 (3): 579–591

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Watorek W, Farley D, Salvesen G, Travis J (1988) Neutrophil elastase and cathepsin G: Structure, function, and biological control. Adv Exp Med Biol 240: 23–31

    Google Scholar 

  34. Eriksson S 0978) Review article Proteases and protease inhibitors in chronic obstructive lung disease. Acta Med Scand 203: 449–455

    Google Scholar 

  35. Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidahl JR (1988) Proteinase 3 A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J Clin Invest 82: 1963–1973

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Schultz J (1980) Myeloperoxidase. In: Sbarra AJ, Strauss RR (eds) The reticuloendothelial system. A comprehensive treatise. 2. Biochemistry and metabolism. New York: Plenum Press, pp 231–253

    Google Scholar 

  37. Thomas EL, Jefferson MM, Grisham MB (1982) Myeloperoxidase-catalyzed incorporation of amines into proteins: Role of hypochlorus acid and dichloramines. Biochemistry 21: 6299–6308

    Google Scholar 

  38. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365–376

    Article  PubMed  CAS  Google Scholar 

  39. Lehrer RI, Ganz T (1990) Antimicrobial polypeptides of human neutrophils. Blood 76: 2169–2181

    PubMed  CAS  Google Scholar 

  40. Spitznagel JK (1990) Antibiotic proteins of human neutrophils. J Clin Invest 86: 1381–1386

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Lehrer RI, Barton A, Daher KA, Harwig SSL, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84: 553–561

    Google Scholar 

  42. Daher K, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60: 1068–1074

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Campanelli D, Detmers PA, Nathan CF, Gabay JE (1990) Azurocidin and a homologous serine protease from neutrophils. Differential antimicrobial and proteolytic properties. J Clin Invest 85: 904–915

    Google Scholar 

  44. Weiss J, Kao L, Victor M, Elsbach P (1985) Oxygen-independent intracellular and oxygen-dependent extracellular killing of escherichia coli S15 by human polymorphonuclear leukocytes. J Clin Invest 76: 206–212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Reiter B (1983) The biological significance of lactoferrin. Int J Tiss Reac 5: 87–96

    CAS  Google Scholar 

  46. Osserman EF (1975) Lysozyme. N Engl J Med 293: 424–425

    Article  Google Scholar 

  47. Konstan MW, Chen PW, Sherman JM, Thomassen MJ, Wood RE, Boat TF (1981) Human lung lysozyme: Sources and properties. Am Rev Respir Dis 123: 120–124

    Google Scholar 

  48. DeMonchy JGR, Kauffman HF, Venge P, Koeter GH, Jansen HM, Sluiter HJ, DeVries K (1985) Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am Rev Respir Dis 131: 373–376

    CAS  Google Scholar 

  49. Bousquet J, Chanez P, Lacoste JY, Barnéon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, Michel F-B (1990) Eosinophilic inflammation in asthma. N Engl J Med 323: 1033–1039

    Article  PubMed  CAS  Google Scholar 

  50. Tai P-C, Spry CJF, Petterson C, Venge P, Olsson I (1984) Monoclonal antibodies distinguish between storage and secreted forms of eosinophil cationic protein. Nature 309: 182–184

    Article  PubMed  CAS  Google Scholar 

  51. Ädelroth E, Rosenhall L, Johansson S-A, Linden M, Venge P (1990) Inflammatory cells and eosinophilic activity in asthmatics investigated by bronchoalveolar lavage: The effects of antiasthmatic treatment with Budesonide or Terbutaline. Am Rev Respir Dis 142: 91–99

    Google Scholar 

  52. Rak S, Björnson A, H$kanson L, Sörenson S, Venge P (1991) The effect of immunotherapy on eosinophil accumulation and production of eosinophil chemotactic activity in the lung of subjects with asthma during natural pollen exposure. J Allergy Clin Immunol 88: 878–888

    Article  PubMed  CAS  Google Scholar 

  53. Fabbri LM, Boschetto P, Zocca E, Milani G, Pivirotto F, Plebani M, Burli-na A, Licata B, Mapp CE (1987) Bronchoalveolar neutrophilia during late asthmatic reactions induced by toluene diisocyanate. Am Rev Respir Dis 136: 36–42

    Article  PubMed  CAS  Google Scholar 

  54. Metzger WJ, Zavala D, Richerson HB, Moseley P, Iwamota P, Monick M, Sjoerdsma K, Hunninghake GW (1987) Local allergen challenge and bronchoalveolar lavage of allergic asthmatic lungs. Description of the model of local airway inflammation. Am Rev Respir Dis 135: 433–440

    PubMed  CAS  Google Scholar 

  55. Lam S, LeRiche J, Phillips D, Chan-Yeung M (1987) Cellular and protein changes in bronchial lavage fluid after late asthmatic reaction in patients with red cedar asthma. J Allergy Clin Immunol 80: 44–50

    Article  PubMed  CAS  Google Scholar 

  56. Bradley BL, Azzawi M, Jacobson M, Assoufi B, Collins JV, Irani A-MA, Schwartz LB, Durham SR, Jeffery PK, Kay AB (1991) Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: Comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J Allergy Clin Immunol 88: 661–674

    Article  PubMed  CAS  Google Scholar 

  57. Bousquet J, Chanez P, Lacoste JY, Enander I, Venge P, Peterson C, Ahlstedt S, Michel F-B, Godard P (1991) Indirect evidence of bronchial inflammation assessed by titration of inflammatory mediators in BAL fluid of patients with asthma. J Allergy Clin Immunol 88: 649–660

    Article  PubMed  CAS  Google Scholar 

  58. Venge P, Hakansson L (1991) The eosinophil and asthma. In: Kaliner M, Barnes PJ, Persson CGA (eds) Asthma. Its pathology and treatment. New York, Basel, Hong Kong: Marcel Dekker, pp 477–502

    Google Scholar 

  59. Venge P, Hakansson L (1991) Current understanding of the role of the eosinophil granulocyte in asthma. Clin Exp Allergy 21 [Suppl] 3: 31–37

    Article  Google Scholar 

  60. Schleimer RP, Sterbinsky SA, Kaiser J, Bickel CA, Klunk DA, Tomioka K, Newman W, Luscinskas FW, Gimbrone MA jr, McIntyre BW, Bochner BS (1992) IL-4 induces adherence of human eosinophils and basophile but not neutrophils to endothelium: Association with expression of VCAM-1. J Immunol 148: 1086–1092

    PubMed  CAS  Google Scholar 

  61. Hakansson L, Carlson M, Stalenheim G, Venge P (1990) Migratory responses of eosinophil and neutrophil granulocytes from patients with asthma. J Allergy Clin Immunol 85: 743–750

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this paper

Cite this paper

Venge, P. (1993). The eosinophil and neutrophil granulocyte in asthma. In: Kummer, F. (eds) Asthma. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7537-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7537-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82454-2

  • Online ISBN: 978-3-7091-7537-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics