Advertisement

DCS: A Promising Classifier System

  • Philippe Collard
  • Cathy Escazut
Conference paper

Abstract

A classifier system is a machine learning system that learns syntactically simple string rules called classifiers. Such systems combine learning and evolution processes. The Bucket Brigade algorithm implements the first one, while the second one often use a genetic algorithm. Unfortunately, this kind of genetics-based machine learning systems suffers from a lot of problems yielding system instability, often resulting in poor performance. The main difficulty consists in maintaining good classifiers in the population during the evolution process.

Keywords

Genetic Algorithm Boolean Function Condition Part Proportion Correct Standard Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.D. Davis. Handbook of Genetics algorithms. VNR Computer Library, 1991.Google Scholar
  2. [2]
    K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan, 1975.Google Scholar
  3. [3]
    D.E. Goldberg. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley, 1989.MATHGoogle Scholar
  4. [4]
    J.H. Holland. Escaping brittleness: The possibilities of general purpose learning algorithms applied to parallel rule-based systems. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning II, pages 593–623. Morgan Kaufmann, 1986.Google Scholar
  5. [5]
    James R. Levenick. Inserting introns improves genetic algorithms success rate: Taking a cue from biology. In R.K. Belew and L.B. Booker, editors, Genetic algorithms and their applications: Proceedings of the Fourth International Conference on Genetic Algorithms, pages 123–127, San Mateo, CA, 1991. Morgan Kaufmann.Google Scholar
  6. [6]
    R.L. Riolo. Bucket brigade performance: 1. long sequences of classifiers, 2. default hierarchies. In J.J. Grefenstette, editor, Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, pages 184–201, Hillsdale, NJ, 1987. Lawrence Erlbaum Associates.Google Scholar
  7. [7]
    L. Shu and J. Schaeffer. Vcs: Variable classifier systems. In J.D. Schaffer, editor, Genetic algorithms and their applications: Proceedings of the Third International Conference on Genetic Algorithms, pages 334–339, San Mateo, CA, 1989. Morgan Kaufmann.Google Scholar
  8. [8]
    M. Vose. Generalizing the notion of schema in genetic algorithms. Artificial Intelligence, 50: 385–396, 1991.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Philippe Collard
    • 1
  • Cathy Escazut
    • 1
  1. 1.Laboratory I3S — CNRS-UNSAValbonneFrance

Personalised recommendations