VLSI Standard Cell Placement by Parallel Hybrid Simulated-Annealing and Genetic Algorithm

  • Karl Kurbel
  • Bernd Schneider
  • Kirti Singh
Conference paper


Placement of standard cells is a part of physical VLSI chip design. In order to achieve high performance, area of the chip and lengths of wires connecting cells have to be minimized. In the placement step, the goal is to place cells in such a way that total wire-length is as short as possible. Since this problem is NP-hard, heuristic techniques have to be applied. Modern approaches include simulated annealing and genetic algorithms. In this paper, we discuss those methods and show that they can be improved by combination. A heuristic technique called parallel recombinative simulated annealing (PRSA) is described. It integrates features of both simulated annealing and genetic algorithms. Behavior of PRSA is studied with respect to different parameter settings.


Genetic Algorithm Simulated Annealing Standard Cell Heuristic Technique Communication Topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aarts, E.H.L., Korst, J.H.M.: Simulated Annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing; New York 1989.MATHGoogle Scholar
  2. [2]
    Brown, D.E., Huntley, C.L., Spillane, A.R.: A parallel genetic heuristic for the quadratic assignment problem; in: Schaffer, J.D. (eds.): Proceedings of the Third International Conference on Genetic Algorithms; San Mateo, CA 1989, pp. 406–415.Google Scholar
  3. [3]
    Chang, S.: The generation of minimal spanning trees with a Steiner topology; in: Journal of the ACM 19 (1972) 4, pp. 699–711.MATHCrossRefGoogle Scholar
  4. [4]
    Chen, H., Flenn, N.S.: Parallel Simulated Annealing and Genetic Algorithms: A Space of Hybrid Models; in: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.): Parallel Problem Solving from Nature — PPSN III; Berlin 1994, pp. 428–439.CrossRefGoogle Scholar
  5. [5]
    Davis, L.: Handbook of Genetic Algorithms; New York 1991.Google Scholar
  6. [6]
    Diekmann, R., Lüling, R., Simon, J.: Problem independent simulated annealing and its application; Technical Report, University of Paderborn, Germany 1992.Google Scholar
  7. [7]
    Goldberg, D.E.: A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing; in: Complex Systems 4 (1990) 4, pp. 445–460.MATHGoogle Scholar
  8. [8]
    Hoffmann, K.H., Sibani, P., Pedersen, J.M., Salamon, P.: Optimal Ensemble Size for Parallel Implementations of Simulated Annealing; in: Applied Mathematics Letters (1990) 3, pp. 53–61.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Kirkpatrick, S., Gellat, S.D., Vecchi, M.P.: Optimization by Simulated Annealing; in: Science 220 (1983) 5, pp. 671–680.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Kling, R.M., Banerjee, P.: ESP — A new standard cell placement package using simulated evolution; in: Proceedings of 24th ACM/IEEE Design Automation Conference; New York 1987, pp. 60–66.Google Scholar
  11. [11]
    Laursen, P.S.: Problem-Independent Parallel Simulated Annealing Using Selection and Migration; in: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.): Parallel Problem Solving from Nature — PPSN III; Berlin 1994, pp. 408–417.Google Scholar
  12. [12]
    Lin, F.-T., Kao, C.-Y., Hsu, C.-C.: Incorporating genetic algorithms into simulated annealing; in: Cantu-Ortiz, F. J., Terashima-Marin, H. (eds.): Proceedings of International Symposium on Artificial Intelligence; Cancun, Mexico 1991, pp. 290–297.Google Scholar
  13. [13]
    Mahfoud, W.S., Goldberg, D.E.: Parallel recombinative simulating annealing: a genetic algorithm; Technical Report No. 92002, University of Illinois, 1992.Google Scholar
  14. [14]
    Mallela, S., Grover, L.K.: Clustering Based Simulated Annealing for Standard Cell Placement; in: Proceedings of 25th ACM/IEEE Design Automation Conference; New York 1988, pp. 312–317.Google Scholar
  15. [15]
    Sechen, C., Lee, K.W.: An improved simulating annealing for row based placement; in: Proceedings of IEEE International Conference on Computer Aided Design; New York 1987, pp. 478–481.Google Scholar
  16. [16]
    Sechen, C., Sangiovanni-Vencentelli, A.: TimberWolf 3.2: A new standard cell placement and global routing package; in: Proceedings of 23rd Design Automation Conference; New York 1986, pp. 432–439.Google Scholar
  17. [17]
    Shahookar, K., Mazumder, P.: A genetic approach to standard cell placement using meta-genetic parameter optimization; in: IEEE Transactions on Computer-aided Design 9 (1990) 5, pp. 500–511.CrossRefGoogle Scholar
  18. [18]
    Shahookar, K., Mazumder, P.: VLSI placement techniques; in: ACM Computing Surveys 23 (1991) 2, pp. 143–220.CrossRefGoogle Scholar
  19. [19]
    Sherwani, N.: Algorithms for VLSI physical design automation; Boston 1993.Google Scholar
  20. [20]
    Singh, K., George, S.M., Rambabu, P.: Recurrent Networks for Standard Cell Placement; in: Balagurusamy, R., Sushila, B. (eds.): Artificial Intelligence Technology — Applications and Management; New Delhi, New York 1993, pp. 141–148.Google Scholar
  21. [21]
    Singh, K., Schneider, B., Kurbel, K.: Solving Sequencing Problems using Recurrent Neural Networks and Simulated Annealing — A Structural and Computational Comparison; to appear in: Proceedings of the International Conference on Operations Research (OR’94), Berlin 1994.Google Scholar
  22. [22]
    Azencott, R.: Simulated Annealing: Parallelization Techniques; New York 1992.MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Karl Kurbel
    • 1
  • Bernd Schneider
    • 1
  • Kirti Singh
    • 2
  1. 1.Institute of Business InformaticsUniversity of MuensterMuensterGermany
  2. 2.Institute of Computer Science, Electronics and InstrumentationDevi Ahilya UniversityIndoreIndia

Personalised recommendations