Application of Genetic Algorithms in Sliding Mode Control Design

  • N. H. Moin
  • A. S. I. Zinober
  • P. J. Harley
Conference paper


A Genetic Algorithm (GA) is a stochastic adaptive algorithm whose search method is based on simulation of natural genetic inheritance and Darwinian striving for survival. The GA has been adapted to study the problem of designing a stable sliding mode which yields robust performance in variable structure control systems. For various cases, we show that GA is viable and has great potential in the design of sliding mode control systems.


Genetic Algorithm Sliding Mode Interior Point Method Gain Matrix Good Objective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, J.E., 1985, Adaptive Selection Methods for Genetic Algorithm, Proceeding of ICGA 1, 101–111.Google Scholar
  2. Chipperfield, A., Fleming, P.J., Pohlheim, H. and Fonseca, C.M., 1993, Genetic Algorithm Toolbox for use with MATLABGoogle Scholar
  3. Dorling, C.M. and Zinober, A.S.I., 1988, Robust hyper-plane design in multivariable variable structure control systems, Int. J. Control, 48, 2043–2054.MathSciNetMATHCrossRefGoogle Scholar
  4. Fleming, P.J. and Fonseca, C.M., 1993, Genetic Algorithms in control system engineering, Research report no. 470, Dept of Automatic Control and Systems Engineering, The University of Sheffield.Google Scholar
  5. Goldberg, D.E., 1989, Genetic Algorithms in search, optimization and machine learning, Addison Wesley, Reading, MAMATHGoogle Scholar
  6. Heck, B.S., Yallapragada, S.V. and Fan, M.K.H., 1993, Numerical methods to design the reaching phase of output feedback variable structure control, (submitted to Automatica)Google Scholar
  7. Michalewicz, Z., 1992, Genetic Algorithm + Data Structures = Evolution Programmes, Springer-VerlagGoogle Scholar
  8. Mühlenbein, H., Gorges-Schleuter, M. and Kramer, O., 1988, Evolution algorithms in Combinatorial optimization, Parallel Computing, 7, 65–85MATHCrossRefGoogle Scholar
  9. Mühlenbein, H. and Schlierkamp-Voosen, D., 1993, Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization, Evolutionary Computation, 1, 25–49CrossRefGoogle Scholar
  10. Oh, M., Gu, D. and Spurgeon, S.K., 1993, Robust pole assignment in a specified region using output feedback, Optimal Control Applications & Methods, 14, 57–66MathSciNetMATHCrossRefGoogle Scholar
  11. Wright, A.H., 1991, Genetic Algorithms for Real Parameter Optimization in Foundations of Genetic Algorithms, Rawlins, J.E. (Ed), Morgan Kaufmann, 205–218Google Scholar
  12. Zinober, A.S.I, (editor), 1990, Deterministic control of uncertain systems, Peter Peregrinus Press, LondonMATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • N. H. Moin
    • 1
  • A. S. I. Zinober
    • 1
  • P. J. Harley
    • 1
  1. 1.University of SheffieldEngland

Personalised recommendations