Advertisement

Connectionist Unifying Prolog

  • Volker Weber
Conference paper

Abstract

We introduce an connectionist approach to unification using a local and a distributed representation. A Prolog-System using these unification-strategies has been build.

Prolog is a Logic Programming Language which utilizes unification. We introduce a uncertainty measurement in unification. This measurement is based on the structure-abilities of the chosen representations. The strategy using a local representation, called ℓ-CUP, utilizes a self-organizing feature-map (FM-net) to determine similarities between terms and induces the representation for a relaxation-network (relax-net). The strategy using a distributed representation, called d-CUP, embeds a similarity measurement by its recurrent representation. It has the advantage that similar terms have a similar representation. The unification itself is done by a backpropagation network (BP-net).

We have proven the systems adequacy for unification, its efficient computation, and the ability to do extended unification.

Keywords

Logic Programming Unification Rule Connectionist Approach Circular Convolution Connectionist Unify 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. H. Ballard. Parallel logic inference and energy minimization. TR 142, CS Dep., Univ. of Rochester, NY 14627, (3)86.Google Scholar
  2. [2]
    R.S. Boyer, J.S. Moore. The sharing of structure in theorem-proving programs. Mach.Int., 101-116, 72.Google Scholar
  3. [3]
    N. Dershowitz, J.-P. Touannaud. Rewrite systems. In J. van Leeuven, ed., Handbook of Theoretical Computer Science B: Formal Methods and Semantics, 243-320. North-Holland, Amsterdam, 90.Google Scholar
  4. [4]
    C. Dwork, P.C. Kanellakis, J.C. Mitchell. On the sequential nature of unification. J. of Logic Programming, 1:35-50, 84.Google Scholar
  5. [5]
    N. Eisinger, H. J. Ohlbach. Deduction systems based on resolution. SR-90-12, Univ. K’lautern, 90.Google Scholar
  6. [6]
    J. Hager, M. Moser. An approach to parallel unification using transputers. In 12th GWAI, 83-91, 89.Google Scholar
  7. [7]
    J. Harland, J. Jaffar. On parallel unification for Prolog. New Generation Computing, 5:259-279, 87.Google Scholar
  8. [8]
    J. Herbrand. Recherches sour la théorie de la démonstration. Travaux de la Soc. des Science et des Lettres de Varsovie, 33(128), 30.Google Scholar
  9. [9]
    S. Hölldobler. A Connectionist Unification Algorithm. TR-90-012, ICSI, Berkeley, CA, (3)90.Google Scholar
  10. [10]
    G. Huet. Resolution d’equations dans les langages d’odre 1, 2,…, ω. PhD thesis, Univ.de Paris 7, 76.Google Scholar
  11. [11]
    Y. Kaneda, N. Tamura, K. Wada, H. Matsuda, S. Kuo, S. Maekawa. Sequential Prolog machine PEK. New Generation Computing, 4:51-66, 86.Google Scholar
  12. [12]
    K. Knight. Unification: A Multidisciplinary Survey. Computing Surveys, 21(1):93-124, (3)89.Google Scholar
  13. [13]
    T. Kohonen. Self-Organization and Associative Memory. Springer, Berlin, 84.Google Scholar
  14. [14]
    M. Livesey, J. Siekmann. Termination and decidability results for string unification. CSM-12, Computing Center, Essex University, 75.Google Scholar
  15. [15]
    A. Martelli, U. Montanari. An efficient unification algorithm. ACM Trans. on Prg., Lang. and Syst., 4(2):258-282, (4)82.Google Scholar
  16. [16]
    Y. Miyata. A User’s Guide to PlaNet Version 5.6: A Tool for Constructing, Running, and Looking into a PDP Network. Dep. of CS, University of Colorado, Boulder, (1)91.Google Scholar
  17. [17]
    J. Müller. Assoziative Prozessoren und ihre Anwendung für das Theorembeweisen. Master’s thesis, Univ. Kaiserslautern, 83.Google Scholar
  18. [18]
    M. S. Paterson, M. N. Weginan. Linear unification. In Proc. of the Symp. on the Theory of Comp., 76.Google Scholar
  19. [19]
    F. C. N. Pereira, S. M. Shieber. The semantics of grammar formalisms seen as computer languages. In Proc. of the 10th COLING, 123-129. (7)84.Google Scholar
  20. [20]
    T. Plate. Holographic reduced representations. CRG-TR-91-1, Dep. of CS, University of Toronto, Ontario, Canada, (5)91.Google Scholar
  21. [21]
    T. A. Plate. Holographic recurrent networks. In C. L. Giles, S. J. Hanson, J. D. Cowan, eds., NIPS-5, San Mateo, CA, 92. Morgan Kaufmann.Google Scholar
  22. [22]
    G. D. Plotkin. Building in equational theories. Machine Intelligence, 7:73-90, 72.Google Scholar
  23. [23]
    J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1):23-41, (1)65.Google Scholar
  24. [24]
    J. A. Robinson. Computational logic: The unification computation. Mach. Intell., 6:63-72, 71.Google Scholar
  25. [25]
    P. Robinson. The SUM: An AI coprocessor. Byte, 10(6):169-180, (6)85.Google Scholar
  26. [26]
    L. Shastri. A connectionist approach to knowledge representation and limited inference. Cog.Sc., 12:331-392, 88.Google Scholar
  27. [27]
    J. Siekmann. Unification of commutative terms. IB 2/76, Institut für Informatik I, Univ. Karlsruhe, 76.Google Scholar
  28. [28]
    P. Smolensky. On variable binding and the representation of symbolic structures in connectionist systems. CU-CS-355-87, Dep. of CS & Inst. of Cog.Sc., Univ. of Colorado, Boulder (CO), (2)87.Google Scholar
  29. [29]
    A. Stolcke. Generierung natürlichsprachlicher Sätze in unifikationsbasierten Grammatiken. Master’s thesis, Technical Univ. München, 88.Google Scholar
  30. [30]
    A. Stolcke, D. Wu. Tree matching with recursive distributed representations. TR-92-025, ICSI, Berkeley, CA, (4)92.Google Scholar
  31. [31]
    P. Szabó. The Undecidability of the dita-Unification Problem. IB 04/78, Univ. Karlsruhe, 78.Google Scholar
  32. [32]
    P. Szabó. Theory of First Order Unification. PhD thesis, Univ. Karlsruhe, 82.Google Scholar
  33. [33]
    P. Szabó, E. Unvericht. The unification problem for distributive terms. IB 13/78, Univ. Karlsruhe, 78.Google Scholar
  34. [34]
    M. Venturini-Zilli. Complexity of the unification algorithm for first-order expressions. Technical report, Consiglio Nazionale Delle Ricerche Instituto per le applicazioni del calcolo, Rome, Italy, 75.Google Scholar
  35. [35]
    J. S. Vitter, R. A. Simons. Parallel algorithms for unification and other complete problems in P. In Proc. of the ACM 1984 Annual Conference: The Fifth Generation Challange, (10)84.Google Scholar
  36. [36]
    V. Weber. Connectionist unification with a distributed representation. In IJCNN’92, III:555-560, (11)92.Google Scholar
  37. [37]
    V. Weber. Unifikation in Prolog mit konnektionistischen Modellen. Master’s thesis, U. Dortmund, (2)92.Google Scholar
  38. [38]
    V. Weber. Unification in Prolog by connectionist models. In The 4th Australian Conference on Neural Networks, ACNN’93, Melbourne, Australia, (2)93.Google Scholar
  39. [39]
    H. Yasuura. On the parallel computational complexity of unification. TR-027, ICOT, (10)83.Google Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Volker Weber
    • 1
  1. 1.Computer Science Department, Natural Language Systems DivisionUniversity of HamburgHamburg 50Germany

Personalised recommendations