Identification of Nonlinear Systems Using Dynamical Neural Networks: A Singular Perturbation Approach

  • George A. Rovithakis
  • Manolis A. Christodoulou
Conference paper


In this paper, we employ singular perturbation analysis to examine the stability and robustness properties of a dynamical neural network identifier. Various cases that lead to modeling errors are taken into consideration. Input-output stability theory is used to assure convergence and internal stability of the identifier. Not all the plant states are assumed to be available for measurment.


Singular Perturbation Reduce Order Model Robustness Property Adaptive Observer Unknown Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.S. Narendra and A.M. Annaswamy, Stable Adaptive Systems, Englewood Cliffs, Prentice Hall, 1989.MATHGoogle Scholar
  2. [2]
    K.J. Aström and Wittenmark, Adaptive Control, Reading, MA, Addison-Wesley, 1989.MATHGoogle Scholar
  3. [3]
    K.S. Narendra, Y.H. Lin and L.S. Valavani, “Stable adaptive controller design, Part II: Proof of stability”, IEEE Trans. Automat Contr., vol. AC-25, pp. 440–448, 1980.CrossRefGoogle Scholar
  4. [4]
    A. Isidori, Nonlinear Control Systems, New York, NY, Springer-Verlag, 1989.MATHGoogle Scholar
  5. [5]
    H. Nijmeijer and A.J. van der Schaft, Nonlinear Dynamical Control Systems, New York, NY, Springer-Verlag, 1989.Google Scholar
  6. [6]
    D.G. Taylor, P.V. Kokotovic, R. Marino and I. Kanellakopoulos, “Adaptive Regulation of Nonlinear Systems with Unmodeled Dynamics”, IEEE Trans. Automat. Contr., vol. 34, no. 4, pp. 405–412, 1989.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    I. Kanellakopoulos, P.V. Kokotovic and R. Marino, “An Extended Direct Scheme for Robust Adaptive Nonlinear Control”, Automatica, vol. 27, no. 2, pp. 247–255, 1991.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    S. Sastry and A. Isidori, “Adaptive Control of Linearizable Systems”, IEEE Trans. Automat. Contr., vol. 34, no. 11, pp. 1123–1131, 1989.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    I. Kanellakopoulos, P.V. Kokotovic and A.S. Morse “Systematic Design of Adaptive Controllers for Feedback Linearizable Systems”, IEEE Trans. Automat. Contr., vol. 36, no. 11, pp. 1241–1253, 1991.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    K.S. Narendra, Stable Identification Schemes in System Identification: Advances and Cases Studies, New York: Academic, 1976.Google Scholar
  11. [11]
    P.A. Ioannou and P.V. Kokotovic, “An Asymptotic Error Analysis of Identifiers and Adaptive Observers in the Presens of Parasitics”, IEEE Trans. Automat. Contr., vol. 27, no. 4, pp. 921–927, 1982.MATHCrossRefGoogle Scholar
  12. [12]
    P.A. Ioannou and P.V. Kokotovic, Adaptive Systems with Reduced Models, New York: Springer-Verlag, 1983.MATHCrossRefGoogle Scholar
  13. [13]
    S. Chen, S.A. Billings and P.M. Grant, “Non-linear system identification using neural networks”, International Journal of Control, vol. 51, no. 6, pp. 1191–1214, 1990.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Fu-C. Chen, “Back-Propagation neural networks for nonlinear self-tuning adaptive control”, IEEE Control Systems Magazine, vol. 10, no. 3, pp. 44–48, 1990.CrossRefGoogle Scholar
  15. [15]
    K.S. Narendra and K. Parthasarathy, “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 4–27, 1990.CrossRefGoogle Scholar
  16. [16]
    P.V. Kokotovic, H.K. Khalil and J. O’Reilly, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, New York, 1986.MATHGoogle Scholar
  17. [17]
    N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov’s Direct Method, New York, Springer-Verlag, 1977.MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • George A. Rovithakis
    • 1
  • Manolis A. Christodoulou
    • 1
  1. 1.Dept. of Electronic & Computer EngineeringTechnical University of CreteChania, CreteGreece

Personalised recommendations