Atomic Systems

  • Walter Thirring


The hydrogen atom is so simple that a complete mathematical analysis can be made. This analysis was a watershed of atomic physics.


Atomic System Trial Function Essential Spectrum Point Spectrum Schrodinger Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 4, General

  1. K. Osterwalder, ed. Mathematical Problems in Theoretical Physics. Proceedings of the International Conference on Mathematical Physics Held in Lausanne, Switzerland, August, 1979. Berlin, Heidelberg, New York: Springer, 1980.MATHGoogle Scholar

Chapter 4, Specific Section 4.1

  1. M. J. Englefield. Group Theory and the Coulomb Problem. New York: Interscience, 1972.MATHGoogle Scholar


  1. H. Grosse, H.-R. Grümm, H. Narnhofer, and W. Thirring. Algebraic Theory of Coulomb Scattering. Acta Phys. Austr. 40, 97–103, 1974.Google Scholar


  1. See reference [3], section X.5.Google Scholar
  2. E. Nelson. Time-Ordered Operator Products of Sharp-Time Quadratic Forms. J. Functional Anal. 11, 211–219, 1972.MATHCrossRefGoogle Scholar
  3. W. Faris and R. Lavine. Commutators and Self-Adjointness of Hamiltonian Operators. Commun. Math. Phys. 35, 39–48, 1974.MathSciNetADSMATHCrossRefGoogle Scholar


  1. R. Lavine. Spectral Densities and Sojourn Times. In: Atomic Scattering Theory, J. Nuttall, ed. London, Ontario: University of Western Ontario Press, 1978.Google Scholar


  1. R. Lavine and M. O’Carroll. Ground State Properties and Lower Bounds for Energy Levels of a Particle in a Uniform Magnetic Field and External Potential. J. Math. Phys. 18, 1908–1912, 1977.MathSciNetADSCrossRefGoogle Scholar


  1. See reference [13].Google Scholar


  1. H. Narnhofer and W. Thirring. Convexity Properties for Coulomb Systems. Acta Phys. Austr. 41, 281–297, 1975.MathSciNetGoogle Scholar


  1. See the first reference for (3.5.38; 1).Google Scholar


  1. T. Kinoshita. Ground State of the Helium Atom. Phys. Rev. 105, 1490–1502, 1957.ADSMATHCrossRefGoogle Scholar
  2. C. L. Pekeris. Ground State of Two-Electron Atoms. Phys. Rev. 112, 1649–1658, 1958.MathSciNetADSMATHCrossRefGoogle Scholar
  3. K. Frankowski and C. L. Pekeris. Logarithmic Terms in the Wave Function of the Ground State of Two-Electron Atoms. Phys. Rev. 146, 46–49, 1966.ADSCrossRefGoogle Scholar


  1. T. Hoffmann-Ostenhof. Lower and Upper Bounds to the Decay of the Ground State One-Electron Density of Helium-Like Systems. J. Phys. A12, 1181–1187, 1979.MathSciNetADSGoogle Scholar
  2. R. Ahlrichs, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and J. Morgan. Bounds on the Decay of Electron Densities with Screening, in prep.Google Scholar


  1. P. Deift, W. Hunziker, B. Simon, and E. Vock. Pointwise Bounds on Eigenfunctions and Wave Packets in N-Body Quantum Systems IV. Commun. Math. Phys. 64, 1–34, 1978.MathSciNetADSMATHCrossRefGoogle Scholar


  1. M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof. “Schrödinger Inequalities” and Asymptotic Behavior of the Electron Density of Atoms and Molecules. Phys. Rev. A16, 1782–1785, 1977.MathSciNetADSGoogle Scholar
  2. T. Hoffmann-Ostenhof, M. Hoffmann-Ostenhof, and R. Ahlrichs. “Schrödinger Inequalities” and Asymptotic Behavior of Many-Electron Densities. Phys. Rev. A18, 328–334, 1978.ADSGoogle Scholar


  1. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and W. Thirring. Simple Bounds to the Atomic One-Electron Density at the Nucleus and to Expectation Values of One-Electron Operators. J. Phys. B11, L571–L575, 1978.MathSciNetADSGoogle Scholar

(4.3.45; 2)

  1. See reference for (3.3.4).Google Scholar


  1. See reference for (4.3.43).Google Scholar
  2. W. Faris. Inequalities and Uncertainty Principles. J. Math. Phys. 19, 461–466, 1978.MathSciNetADSCrossRefGoogle Scholar

Section 4.4

  1. D. B. Pearson. Singular Continuous Measures in Scattering Theory. Commun. Math. Phys. 60, 13–36, 1978.ADSMATHCrossRefGoogle Scholar
  2. L. Faddeev. Mathematical Aspects of the Three-Body Problem in the Quantum Scattering Theory. Translation of Trudy Steklov Mat. Inst., vol. 69, 1963. Jerusalem: Israel Program for Scientific Translation, 1965.MATHGoogle Scholar
  3. J. Ginibre and M. Moulin. Hilbert Space Approach to the Quantum Mechanical Three-Body Problem. Ann. Inst. H. Poincarè 21A, 97–145, 1974.MathSciNetGoogle Scholar
  4. I. M. Sigal. Mathematical Foundations of Quantum Scattering Theory for Multiparticle Systems. Memoirs of the Amer. Math. Soc. 16, no. 209. Providence: American Mathematical Society, 1978.Google Scholar
  5. R. Blankenbecler and R. Sugar. Variational Upper and Lower Bounds for Multichannel Scattering. Phys. Rev. 136B, 472–491, 1964.MathSciNetGoogle Scholar
  6. L. Spruch and L. Rosenberg. Upper Bounds on Scattering Lengths for Static Potentials. Phys. Rev. 116, 1034–1040, 1959.MathSciNetADSMATHCrossRefGoogle Scholar
  7. L. Rosenberg and L. Spruch. Subsidiary Minimum Principles for Scattering Parameters. Phys. Rev. A10, 2002–2015, 1974.MathSciNetADSGoogle Scholar


  1. W. Hunziker. On the Spectra of Schrödinger Multiparticle Hamiltonians. Helv. Phys. Acta 39, 451–462, 1966.MathSciNetMATHGoogle Scholar
  2. C. Van Winter. Theory of Finite Systems of Particles I. The Green Function. Mat-Fys. Skr. Danske Vid. Selsk. 2, No.8, 1964.Google Scholar
  3. G. M. Zhislin. Issledovaniye Spektra Operatora Shredingera dlya Sistemy Mnogikh Chastits. Trudy Mosk. Mat. Obs. 9, 81–120, 1960.Google Scholar
  4. S. Weinberg. Systematic Solution of Multiparticle Scattering Problems. Phys. Rev. 133B, 232–256, 1964.MathSciNetADSCrossRefGoogle Scholar
  5. V. Enss. A Note on Hunziker’s Theorem. Commun. Math. Phys. 52, 233–238, 1977.MathSciNetADSCrossRefGoogle Scholar


  1. E. Balslev and J. M. Combes. Spectral Properties of Many-Body Schrödinger Operators with Dilatation-Analytic Interactions. Commun. Math. Phys. 22, 280–294, 1971.MathSciNetADSMATHCrossRefGoogle Scholar


  1. See reference [3], section XII.6.Google Scholar
  2. B. Simon. Resonances in n-Body Quantum Systems with Dilation Analytic Potentials and the Foundations of Time-Dependent Perturbation Theory. Ann. Math. 97, 247–274, 1973.MATHCrossRefGoogle Scholar


  1. B. Simon. N Body Scattering in the Two-Cluster Region. Commun. Math. Phys. 58, 205–210, 1978.ADSCrossRefGoogle Scholar
  2. V. Enss. Two-Cluster Scattering of N Charged Particles. Comrnun. Math. Phys. 65, 151–165, 1979.MathSciNetADSCrossRefGoogle Scholar
  3. J. M. Combes and H. Narnhofer, private communication for the proof used here.Google Scholar


  1. See references for section 3.6.Google Scholar
  2. H. Grosse, H. Narnhofer, and W. Thirring. Accurate Determination of the Scattering Length of Electrons on μ- p Atoms. J. Phys. B12, L189–192, 1980.Google Scholar


  1. P. Hertel, E. H. Lieb, and W. Thirring. Lower Bound to the Energy of Complex Atoms. J. Chem. Phys. 62, 3355–3356, 1975.ADSCrossRefGoogle Scholar

(4.5.27; 1)

  1. E. H. Lieb and B. Simon. The Thomas-Fermi Theory of Atoms, Molecules and Solids. Adv. Math. 23, 22–116, 1977.MathSciNetCrossRefGoogle Scholar

(4.5.27; 2)

  1. See the second reference for (3.5.31).Google Scholar


  1. See reference [6].Google Scholar


  1. See reference for (4.2.19).Google Scholar


  1. S. T. Epstein. Ground-State Energy of a Molecule in the Adiabatic Approximation. J. Chem. Phys. 44, 838–839, 1966; erratum, ibid., p. 4062.ADSGoogle Scholar
  2. See reference [19]Google Scholar
  3. J. M. Combes and R. Seiler. Regularity and Asymptotic Properties of the Discrete Spectrum of Electronic Hamiltonians. Int. J. Quanturn Chem. 14, 213–229, 1978.CrossRefGoogle Scholar


  1. See reference for (4.2.19).Google Scholar


  1. E. H. Lieb and B. Simon. Monotonicity of the Electronic Contribution to the Born-Oppenheimer Energy. J. Phys. B11, L537–L542, 1978.MathSciNetADSGoogle Scholar
  2. M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, in prep. (for the proof using the differential inequality).Google Scholar


  1. See the second reference for (3.5.31).Google Scholar

(4.6.28; 2)

  1. A subsequent justification of the formal argument of C. A. Coulson; see R. Ahlrichs. Convergence Properties of the Intermolecular Force Series (1/R-Expansion). Theor. Chim. Acta 41, 7–15, 1976.CrossRefGoogle Scholar

(4.6.28; 5)

  1. J. D. Power. Fixed Nuclei Two-Centre Problem in Quantum Mechanics. Phil. Trans. Roy. Soc. London A274, 663–697, 1973.ADSGoogle Scholar

(4.6.28; 7)

  1. See reference [19].Google Scholar

(4.6.31; I)

  1. R. F. Alvarez-Estrada and A. Galindo. Bound States in some Coulomb Systems. Il Nuovo Cim. 44B, 47–66, 1978.MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Walter Thirring
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of ViennaAustria

Personalised recommendations