Advertisement

The Mathematical Formulation of Quantum Mechanics

  • Walter Thirring

Abstract

There are many surprising aspects to the infinitely many directions in an infinite-dimensional space. For this reason it is necessary to investigate carefully which of the familiar properties of finite-dimensional spaces carry over unchanged and which do not.

Keywords

Hilbert Space Quantum Mechanics Weak Topology Hermitian Operator Unbounded Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 2, General

  1. N. I. Akhiezer and I. M. Glazman. Theory of Linear Operators in Hilbert Space, in two volumes. New York: F. Ungar, 1961–63.Google Scholar
  2. N. Dunford and J. T. Schwartz. Linear Operators, in three volumes. New York: Interscience, 1958–1971.Google Scholar
  3. E. Hille and R. S. Phillips. Functional Analysis and Semigroups. Amer. Math. Soc. Colloquium Publications, vol. 31. Providence: American Mathematical Society, 1957.MATHGoogle Scholar
  4. K. Jörgens and J. Weidmann. Spectral Properties of Hamiltonian Operators, Lecture Notes in Mathematics, vol. 313. Heidelberg, New York: Springer, 1973.Google Scholar
  5. T. Kato. Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 132. Berlin, Heidelberg, New York: Springer, 1966.MATHGoogle Scholar
  6. G. Kothe. Topological Vector Spaces, vol. 1. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 159. Berlin, Heidelberg, New York: Springer. 1969.CrossRefGoogle Scholar
  7. J. von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton: Princeton University Press, 1955.MATHGoogle Scholar
  8. F. Riesz and B. Sz.-Nagy. Functional Analysis. New York: F. Ungar, 1965.Google Scholar
  9. A. P. Robertson and W. J. Robertson, Topological Vector Spaces. Cambridge: At the University Press, 1964.MATHGoogle Scholar
  10. J. Weidmann. Lineare Operatoren in Hilbertraumen. Stuttgart: B. G. Teubner, 1976.Google Scholar
  11. K. Yôsida. Functional Analysis. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 123. Berlin, Heidelberg, New York: Springer, 1978.Google Scholar

References Chapter 2, Specific (2.2.34)

  1. J. M. Jauch. Foundations of Quantum Mechanics. Reading, Mass.: Addison-Wesley, 1968.MATHGoogle Scholar
  2. G. Ludwig. Die Grundlagen der Quantenmechanik. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 70. Berlin, Heidelberg, New York: Springer, 1954.Google Scholar
  3. G. Mackey. The Mathematical Foundations of Quantum Mechanics. New York: Benjamin, 1963.MATHGoogle Scholar
  4. P. Mittelstaedt. Philosophical Problems of Modern Physics. Boston Studies in the Philosophy of Science, vol. 18. Boston: D. Reidel, 1976.Google Scholar
  5. C. Piron. Foundations of Quantum Physics. New York: Benjamin, 1976.MATHGoogle Scholar

Section 2.3

  1. O. Bratteli and D. W. Robinson. Operator Algebras and Quantum Statistical Mechanics, vol. I: C* and W* Algebras. Symmetry Groups. Decomposition of States. Texts and Monographs in Physics. Berlin, Heidelberg, New York: Springer, 1979.MATHGoogle Scholar
  2. J. Dixmier. C* Algebras. Amsterdam: North-Holland, and New York: Elsevier North Holland, 1977.MATHGoogle Scholar
  3. M. A. Naimark. Normed Algebras. Groningen: Woiters-Noordhoff, 1972.Google Scholar
  4. S. Sakai. C* Algebras and W* Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 60. Berlin, Heidelberg, New York: Springer, 1971.Google Scholar

(2.4.9)

  1. H. Trotter. On the Product of Semigroups of Operators. Proc. Amer. Math. Soc. 10, 545–551, 1959.MathSciNetMATHCrossRefGoogle Scholar
  2. F. Dyson. The Radiation Theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75, 486–502, 1949.MathSciNetADSMATHCrossRefGoogle Scholar

(2.5.14)

  1. H. Narnhofer. Quantum Theory for l/r 2-Potentials. Acta Phys. Austr. 40, 306–322, 1974.MathSciNetGoogle Scholar

(2.5.20)

  1. G. Flamand. Applications of Mathematics to Problems in Theoretical Physics. In: Cargèse Lectures in Theoretical Physics, F. Lurçat, ed. New York: Gordon and Breach, 1967, p. 247.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Walter Thirring
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of ViennaAustria

Personalised recommendations