Skip to main content

Visualization of Time-Dependent Velocity Fields by Texture Transport

  • Conference paper
Book cover Visualization in Scientific Computing ’98

Part of the book series: Eurographics ((EUROGRAPH))

Abstract

Vector field visualization is an important topic in scientific visualization. The aim is to graphically represent field data in an intuitively understandable and precise way, which should be closely related to the physical interpretation. A new tool, the texture transport method is presented, which especially applies to time-dependent velocity fields. It is based on an accurate numerical scheme for convection equations, which is used to compute Lagrangian coordinates in space time. These coordinates are then used as texture coordinates referring to some prescribed texture in the Lagrangian reference space. The method is combined with a reliability indicator. This indicator influences the final appearance of the texture and thereby leads to reliable visual information. At first the method applies to 2D problems. It can be generalized to 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bänsch, E.: Simulation of instationary, incompressible flows, Submitted to Acta Math. Univ. Comenianae.

    Google Scholar 

  2. Cabral, B.; Leedom, L.: Imaging Vector Field Using Line Integral Convolution, Computer Graphics Proceedings, Annual Conference Series 1993.

    Google Scholar 

  3. Chavent, G.; Cockburn, B.: The Local Projection P0-P1-Discontinuous-Galerkin Finite Element Method For Scalar Conservation Laws, Mathematical Modelling and Numerical Analysis Vol. 23,N 4, 1989,p. 565–592.

    MathSciNet  MATH  Google Scholar 

  4. Cockburn, B.; Shu, C.-W.: TVB Runge-Kutta Local Projection Discontinuous-Galerkin Finite Element Method For Conservation Laws II: General Framework, Mathematics of Computation, Vol.52,Nu. 186, 1989,p. 411–435.

    MathSciNet  MATH  Google Scholar 

  5. Cockburn, B.; Hou, S.; Shu, C.-W.: TVB Runge-Kutta Local Projection Discontinuous-Galerkin Finite Element Method For Conservation Laws IV: The Multidimensional Case, Mathematics of Computation, Vol.54,Nu. 190, 1990,p. 545–581.

    MathSciNet  MATH  Google Scholar 

  6. de Leeuw, W. C.; van Wijk, J. J.: Enhanced Spot Noise for Vector Field Visualization, presented at Visualization’95, Atlanta.

    Google Scholar 

  7. Engquist, B., Osher, S.: One sided difference approximations for nonlinear conservation laws. Math, of Comp. 36 (1981), 321–351.

    Article  MathSciNet  MATH  Google Scholar 

  8. Forssell, L. K.: Visualizing Flow Over Curvilinear Grid Surfaces Using Line Integral Convolution, IEEE Visualization’94, 240–246, 1995.

    Google Scholar 

  9. Hultquist,J. P. M.: Interactive Numerical Flow Visualization Using Stream Surfaces. Computing Systems in Engineering, Vol.1, No. 2–4, 1990, pp. 349–353.

    Article  Google Scholar 

  10. Kröner, D.: Numerical Schemes for Conservation Laws, Wiley Teubner.

    Google Scholar 

  11. Kröner, D.; Ohlberger, M.: A-posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Preprint, Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg. 1998.

    Google Scholar 

  12. Max, N.; Crawfis, R.; Grant, C.: Visualizing 3D Velocity Fields Near Contour Surfaces, IEEE Visualization’94, 248–254, 1994.

    Google Scholar 

  13. Max, N.; Becker, B.: Flow Visualization using Moving Textures, Proceedings of the ICASE/LaRC Symposium on Time Varying Data, NASA Conference Publication 3321, D. C. Banks, T. W. Crocket, and K. Stacy, editors, (1996) pp. 77–87.

    Google Scholar 

  14. Neubauer, R.; Ohlberger, M.; Rumpf, M.; Schworer, R.: Efficient Visualization of Large-Scale Data on Hierarchical Meshes. Lefer, W. and Grave, M., Visualization in Scientific Computing, 1997, Springer.

    Google Scholar 

  15. Ohlberger, M.; Rumpf, M.: Adaptive Projection Methods in Multiresolutional Scientific Visualization. Report 20, Sonderforschungsbereich 256, Bonn, 1998.

    Google Scholar 

  16. Ohlberger, M.; Rumpf, M.: Hierarchical and Adaptive Visualization on Nested Grids. Computing. Vol. 59 (4), pp. 269–285, 1997.

    Article  MathSciNet  Google Scholar 

  17. SFB 256, University of Bonn: GRAPE manual, http://www.iam.unibonn.de/main.html, Bonn 1995.

    Google Scholar 

  18. Sonar, T.; Süli, E.: A dual graph-norm refinement indicator for finite volume approximations of the Euler equations. Oxford University,Report 94 /9, 1994.

    Google Scholar 

  19. Stalling, D.; Hege C.: Fast and Resolution Independent Line Integral Convolution, Proceedings SIGGRAPH’95, 1995.

    Google Scholar 

  20. Stalling, D.; Zöckler; M.; Hege, H.-C.: Fast Display of Illuminated Field Lines. IEEE Transactions on Visualization and Computer Graphics, No. 2 Vol. 3 1997.

    Google Scholar 

  21. Turk, G.: Re-tiling polygonal surfaces. Computer Graphics (SIGGRAPH’92 Proceedings) Vol. 26 1992, 55–64.

    Article  Google Scholar 

  22. van Wijk, J. J.: Spot Noise—Texture Synthesis for Data Visualization, Computer Graphics, Volume 25, Number 4, 1991.

    Google Scholar 

  23. van Wijk, J. J.: Implicit Stream Surfaces, IEEE Visualization’93, 245–252, 1993.

    Google Scholar 

  24. van Wijk, J. J.: Flow Visualization with Surface Particles. IEEE Computer Graphics and Applications Vol. 13, No. 4, 1993, pp. 18–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag/Wien

About this paper

Cite this paper

Becker, J., Rumpf, M. (1998). Visualization of Time-Dependent Velocity Fields by Texture Transport. In: Bartz, D. (eds) Visualization in Scientific Computing ’98. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7517-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7517-0_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83209-7

  • Online ISBN: 978-3-7091-7517-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics