Visualization of Time-Dependent Velocity Fields by Texture Transport

  • Joachim Becker
  • Martin Rumpf
Part of the Eurographics book series (EUROGRAPH)


Vector field visualization is an important topic in scientific visualization. The aim is to graphically represent field data in an intuitively understandable and precise way, which should be closely related to the physical interpretation. A new tool, the texture transport method is presented, which especially applies to time-dependent velocity fields. It is based on an accurate numerical scheme for convection equations, which is used to compute Lagrangian coordinates in space time. These coordinates are then used as texture coordinates referring to some prescribed texture in the Lagrangian reference space. The method is combined with a reliability indicator. This indicator influences the final appearance of the texture and thereby leads to reliable visual information. At first the method applies to 2D problems. It can be generalized to 3D.


Numerical Viscosity IEEE Visualization Texture Space Line Integral Convolution Inflow Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bänsch, E.: Simulation of instationary, incompressible flows, Submitted to Acta Math. Univ. Comenianae.Google Scholar
  2. 2.
    Cabral, B.; Leedom, L.: Imaging Vector Field Using Line Integral Convolution, Computer Graphics Proceedings, Annual Conference Series 1993.Google Scholar
  3. 3.
    Chavent, G.; Cockburn, B.: The Local Projection P0-P1-Discontinuous-Galerkin Finite Element Method For Scalar Conservation Laws, Mathematical Modelling and Numerical Analysis Vol. 23,N 4, 1989,p. 565–592.MathSciNetMATHGoogle Scholar
  4. 4.
    Cockburn, B.; Shu, C.-W.: TVB Runge-Kutta Local Projection Discontinuous-Galerkin Finite Element Method For Conservation Laws II: General Framework, Mathematics of Computation, Vol.52,Nu. 186, 1989,p. 411–435.MathSciNetMATHGoogle Scholar
  5. 5.
    Cockburn, B.; Hou, S.; Shu, C.-W.: TVB Runge-Kutta Local Projection Discontinuous-Galerkin Finite Element Method For Conservation Laws IV: The Multidimensional Case, Mathematics of Computation, Vol.54,Nu. 190, 1990,p. 545–581.MathSciNetMATHGoogle Scholar
  6. 6.
    de Leeuw, W. C.; van Wijk, J. J.: Enhanced Spot Noise for Vector Field Visualization, presented at Visualization’95, Atlanta.Google Scholar
  7. 7.
    Engquist, B., Osher, S.: One sided difference approximations for nonlinear conservation laws. Math, of Comp. 36 (1981), 321–351.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Forssell, L. K.: Visualizing Flow Over Curvilinear Grid Surfaces Using Line Integral Convolution, IEEE Visualization’94, 240–246, 1995.Google Scholar
  9. 9.
    Hultquist,J. P. M.: Interactive Numerical Flow Visualization Using Stream Surfaces. Computing Systems in Engineering, Vol.1, No. 2–4, 1990, pp. 349–353.CrossRefGoogle Scholar
  10. 10.
    Kröner, D.: Numerical Schemes for Conservation Laws, Wiley Teubner.Google Scholar
  11. 11.
    Kröner, D.; Ohlberger, M.: A-posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Preprint, Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg. 1998.Google Scholar
  12. 12.
    Max, N.; Crawfis, R.; Grant, C.: Visualizing 3D Velocity Fields Near Contour Surfaces, IEEE Visualization’94, 248–254, 1994.Google Scholar
  13. 13.
    Max, N.; Becker, B.: Flow Visualization using Moving Textures, Proceedings of the ICASE/LaRC Symposium on Time Varying Data, NASA Conference Publication 3321, D. C. Banks, T. W. Crocket, and K. Stacy, editors, (1996) pp. 77–87.Google Scholar
  14. 14.
    Neubauer, R.; Ohlberger, M.; Rumpf, M.; Schworer, R.: Efficient Visualization of Large-Scale Data on Hierarchical Meshes. Lefer, W. and Grave, M., Visualization in Scientific Computing, 1997, Springer.Google Scholar
  15. 15.
    Ohlberger, M.; Rumpf, M.: Adaptive Projection Methods in Multiresolutional Scientific Visualization. Report 20, Sonderforschungsbereich 256, Bonn, 1998.Google Scholar
  16. 16.
    Ohlberger, M.; Rumpf, M.: Hierarchical and Adaptive Visualization on Nested Grids. Computing. Vol. 59 (4), pp. 269–285, 1997.MathSciNetCrossRefGoogle Scholar
  17. 17.
    SFB 256, University of Bonn: GRAPE manual,, Bonn 1995.Google Scholar
  18. 18.
    Sonar, T.; Süli, E.: A dual graph-norm refinement indicator for finite volume approximations of the Euler equations. Oxford University,Report 94 /9, 1994.Google Scholar
  19. 19.
    Stalling, D.; Hege C.: Fast and Resolution Independent Line Integral Convolution, Proceedings SIGGRAPH’95, 1995.Google Scholar
  20. 20.
    Stalling, D.; Zöckler; M.; Hege, H.-C.: Fast Display of Illuminated Field Lines. IEEE Transactions on Visualization and Computer Graphics, No. 2 Vol. 3 1997.Google Scholar
  21. 21.
    Turk, G.: Re-tiling polygonal surfaces. Computer Graphics (SIGGRAPH’92 Proceedings) Vol. 26 1992, 55–64.CrossRefGoogle Scholar
  22. 22.
    van Wijk, J. J.: Spot Noise—Texture Synthesis for Data Visualization, Computer Graphics, Volume 25, Number 4, 1991.Google Scholar
  23. 23.
    van Wijk, J. J.: Implicit Stream Surfaces, IEEE Visualization’93, 245–252, 1993.Google Scholar
  24. 24.
    van Wijk, J. J.: Flow Visualization with Surface Particles. IEEE Computer Graphics and Applications Vol. 13, No. 4, 1993, pp. 18–24.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • Joachim Becker
    • 1
  • Martin Rumpf
    • 2
  1. 1.Institute for Applied MathematicsFreiburg UniversityGermany
  2. 2.Institute for Applied MathematicsBonn UniversityGermany

Personalised recommendations