Fast Generation of Multiresolution Surfaces from Contours

  • Andreas Schilling
  • Reinhard Klein
Conference paper
Part of the Eurographics book series (EUROGRAPH)


Surface reconstruction from contours is an important problem especially in medical applications. Other uses include reconstruction from topographic data, or isosurface generation in general. The drawback of existing reconstruction algorithms from contours is, that they are relatively complicated and often have numerical problems. Furthermore, algorithms to generate multiresolution surface models do not exploit the special situation having contours. In this paper we describe a new robust and fast reconstruction algorithm from contours that delivers a multiresolution surface with controlled distance from the original contours. Supporting selective refinement in areas of interest, this multiresolution model can be handled interactively without giving up accuracy.


Medial Axis Distance Field Marching Cube Algorithm Marching Cube Edge Collapse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gill Barequet and Micha Sharir. Piecewise-linear interpolation between polygonal slices. Computer Vision and Image Understanding: CVIU, 63 (2): 251–272, March 1996.MATHCrossRefGoogle Scholar
  2. 2.
    Jules Bloomenthal. Polygonizatino of implicit surfaces. Computer Aided Geometric Design, 5 (4): 341–355, November 1988.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Jean-Daniel Boissonnat. Shape reconstruction from planar cross sections. Computer Vision, Graphics, and Image Processing, 44 (1): 1–29, October 1988.CrossRefGoogle Scholar
  4. 4.
    H. N. Christiansen, T. W. Sederberg. Conversion of complex contour line definitions into polygonal element mosaics. Computer Graphics, 12 (3): 187–192, August 1978.CrossRefGoogle Scholar
  5. 5.
    P. Cignoni, C. Montani, R. Scopigno. A comparison of mesh simplification algorithms. Computers & Graphics, 22, 1998.Google Scholar
  6. 6.
    J. Cohen, A. Varshney, D. Manocha, G. Turk. Simplification envelopes. Computer Graphics, 30 (Annual Conference Series): 119–128, 1996.Google Scholar
  7. 7.
    Daniel Cohen-Or, David Levin, and Amira Solomovici. Contour blending using warp-guided distance field interpolation. In IEEE Visualization ‘96. IEEE, October 1996. ISBN 0-89791- 864-9.Google Scholar
  8. 8.
    H. Fuchs, Z. M. Kedem, S. P. Uselton. Optimal surface re-construction from planar contours. Comm. of the ACM, 20: 693–702, 1977.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Michael Garland, Paul S. Heckbert. Surface simplification using quadric error metrics. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages 209–216. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7.Google Scholar
  10. 10.
    Gabor T. Herman, Jingsheng Zheng, Carolyn A. Bucholtz. Shape-based interpolation. IEEE Computer Graphics and Applications, 12 (3): 69–79, May 1992.CrossRefGoogle Scholar
  11. 11.
    John Hershberger, Jack Snoeyink. Speeding up the Douglas-Peucker line-simplification algorithm. In P. Bresnahan et al., editors, Proc. 5th Intl. Symp. on Spatial Data Handling, volume 1, pages 134–143, Charleston, SC, August 1992.Google Scholar
  12. 12.
    Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 99–108. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04–09 August 1996.Google Scholar
  13. 13.
    M. W. Jones, Min Chen. A new approach to the construction of surfaces from contour data. Computer Graphics Forum, 13(3):C/75–C/84,.???? 1994.CrossRefGoogle Scholar
  14. 14.
    E. Keppel. Approximating complex surfaces by triangulation of contour lines. IBM J. Res. Dev., 19: 2–11, 1975.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    R. Klein, J. Krämer. Multiresolution representations for surface meshes. In Proceedings of the SCCG (Spring Conference on Computer Graphics), Budmerice, Slovakia, pages 57–66, 1997.Google Scholar
  16. 16.
    Reinhard Klein, Gunther Liebich, Wolfgang Straßer. Mesh reduction with error control. In IEEE Visualization ‘96. IEEE, October 1996. ISBN 0-89791-864-9.Google Scholar
  17. 17.
    D. Levin. Multidimensional reconstruction by set-valued approximation. IMA J.Numerical Analysis, (6): 173–184, 1986.MATHCrossRefGoogle Scholar
  18. 18.
    W. E. Lorensen, H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. In M. C. Stone, editor, SIGGRAPH ‘87 Conference Proceedings (Anaheim, CA, July 27–31, 1987), pages 163–170. Computer Graphics, Volume 21, Number 4, July 1987.Google Scholar
  19. 19.
    Michael Lounsbery, Charles Loop, Stephen Mann, David Meyers, James Painter, Tony DeRose, Kenneth Sloan. Testbed for the comparison of parametric surface methods. In L. A. Ferrari, R. J. P. de Figueiredo, editors, Curves and Surfaces in Computer Vision and Graphics (Proceedings of SPIE), volume 1251, pages 94–105, 1990.Google Scholar
  20. 20.
    David Meyers, Shelley Skinner, Kenneth Sloan. Surfaces from contours. ACM Transactions on Graphics, 11 (3): 228–258, July 1992.MATHCrossRefGoogle Scholar
  21. 21.
    Heinrich Müller, A. J. Klingert. Surface interpolation from cross sections. In H. Hagen, H. Mueller, G. Nielsen, editors, Focus on Scientific Visualization, pages 139–190. Springer-Verlag, 1993.CrossRefGoogle Scholar
  22. 22.
    Heinrich Müller, Michael Stark. Adaptive generation of surfaces in volume data. The Visual Computer, 9: 182–199, 1993.CrossRefGoogle Scholar
  23. 23.
    J. M. Oliva, M. Perrin, S. Coquillart. 3D reconstruction of complex polyhedral shapes from contours using a simplified generalized Voronoi diagram. Computer Graphics Forum, 15 (3): C397–C408, September 1996.CrossRefGoogle Scholar
  24. 24.
    Bradley A. Payne, Arthur W. Toga. Distance field manipulation of surface models. IEEE Computer Graphics and Applications, 12 (1): 65–71, January 1992.CrossRefGoogle Scholar
  25. 25.
    R. Ronfard, J. Rossignac. Full-range approximation of triangulated polyhedra. Computer Graphics Forum, 15 (3): C67–C76, C462, September 1996.CrossRefGoogle Scholar
  26. 26.
    William J. Schroeder, Jonathan A. Zarge, William E. Lorensen. Decimation of triangle meshes. Computer Graphics, 26 (2): 65–70, July 1992.CrossRefGoogle Scholar
  27. 27.
    L. L. Schumaker. Reconstructing 3d objects from cross-sections. In W. Dahmen, M. Gasca, C. A. Micchelli, editors, Computation of Curves and Surfaces, pages 275–309. Kluwer Academic, Dordrecht/Norwell, MA, 1989.Google Scholar
  28. 28.
    R. Shu, C. Zhou, M. S. Kankanhalli. Adaptive marching cubes. The Visual Computer, 11(4):202–217, 1995. ISSN 0178-2789.Google Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • Andreas Schilling
    • 1
  • Reinhard Klein
    • 1
  1. 1.Universität TübingenTübingenGermany

Personalised recommendations