Advertisement

Data—Dependent Surface Simplification

  • Karin Frank
  • Ulrich Lang
Part of the Eurographics book series (EUROGRAPH)

Abstract

In Scientific Visualization, surfaces have often attached data, e. g. cutting surfaces or isosurfaces in numerical simulations with multiple data components. These surfaces can be e. g. the output of a marching cubes algorithm which produces a large number of very small triangles. Existing triangle decimation algorithms use purely geometric criteria to simplify over sampled surfaces. This approach can lead to coarse representations of the surface in areas with high data gradients, thus loosing important information.

In this paper, a data-dependent reduction algorithm for arbitrary triangulated surfaces is presented using besides geometric criteria a gradient approximation of the data to define the order of geometric elements to be removed. Examples show that the algorithm works sufficiently fast to be used interactively in a VR environment and allows relatively high reduction rates keeping a good quality representation of the surfaces.

Keywords

Priority Queue Boundary Vertex Geometric Criterion Small Triangle Boundary Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Alboul, R. van Damme. Polyhedral metrics in surface reconstruction: Tight triangulations. Memorandum No. 1275, Faculty of Applied Mathematics, University of Twente (NL), 1995.Google Scholar
  2. 2.
    L. Alboul, R. van Damme. Polyhedral metrics in surface reconstruction. In Mathematics on Surfaces VI, pages 171–200. Clarendon Press, 1996.Google Scholar
  3. 3.
    A. D. Aleksandrov. On a class of closed surfaces (in russian). Mat. Sbornik, 4:69–77, 1938.Google Scholar
  4. 4.
    A. D. Aleksandrov, V. A. Zalgaller. Intrinsic Geometry of Surfaces. AMS, 1967.Google Scholar
  5. 5.
    M. de Berg, M. van Krefeld, M. Overmars, O. Schwarzkopf. Computational Geometry. Springer, 1997.MATHGoogle Scholar
  6. 6.
    B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6:485–524, 1991.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    N. Dyn, S. Rippa. Data dependent triangulations for scattered data interpolation and finite element approximation. Applied Numerical Mathematics, 12:89–105, 1993.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    M. Garland, Heckbert P. S. Surface simplification using quadric error metrics. In Computer Graphics, 1997.Google Scholar
  9. 9.
    R. Grosso, Ch. Lürig,, T. Ertl. The multilevel finite element method for adaptive mesh optimization and visualization of volume data. In IEEE Visualization 97, pages 387–394. IEEE, 1997.Google Scholar
  10. 10.
    A. Gueziec. Surface simplification inside a tolerance volume. Technical Report RC 20440, IBM Research Report, 1997.Google Scholar
  11. 11.
    B. Hamann. Curvature approximation of 3d manifolds in 4d space. CAGD, 11:621–632, 1994.MathSciNetGoogle Scholar
  12. 12.
    B. Hamann. A data reduction scheme for triangulated surfaces. CAGD, 11:197–214, 1994.MathSciNetMATHGoogle Scholar
  13. 13.
    H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle. Mesh optimization. Computer Graphics (Proc. SIGGRAPH), 27(2):19–25, 1993.Google Scholar
  14. 14.
    R. Klein, G. Liebich, W. Strasser. Mesh reduction with error control. In IEEE Visualization ‘96, pages 311–318. IEEE, 1996.Google Scholar
  15. 15.
    J. Popovic, H. Hoppe. Progressive simplicial complexes. Computer Graphics (Proc. SIGGRAPH), 31:217–224, 1997.Google Scholar
  16. 16.
    D. Rantzau, U. Lang. A Scalable Virtual Environment for Large Scale Scientific Data Analysis. In: Proceedings of the Euro VR Mini Conference 97, Amsterdam, 10–11. Nov. 1997, Elsevier 1998.Google Scholar
  17. 17.
    W. Schroeder, J. Zarge, W. E. Lorensen. Decimation of triangle meshes. Computer Graphics (Proc. SIGGRAPH), 26(2):65–70, 1992.CrossRefGoogle Scholar
  18. 18.
    R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl., 1:51–64, 1991.MathSciNetMATHGoogle Scholar
  19. 19.
    S. Stead. Estimation of gradients from scattered data. Rocky Mountain J. Math., 14(1):265–279, 1984.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximation. In 5th Intern. Conf. on Comp. Vision, Los Alamitos. IEEE Comp. Society Press, 1995.Google Scholar
  21. 21.
    A. Wierse, U. Lang, R. Rühle. Architectures of Distributed Visualization Systems and their Enhancements. Eurographics Workshop on Visualization in Scientific Computing, Abingdon, 1993.Google Scholar
  22. 22.
    J. Wilhelms, A. Van Gelder. Multi-dimensional trees for controlled volume rendering and compression. In 1994 Symposium on Volume Visualization. ACM SIGGRAPH, 1994.Google Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • Karin Frank
    • 1
  • Ulrich Lang
    • 1
  1. 1.HLRS Computing Center University StuttgartStuttgartGermany

Personalised recommendations