Molecular interactions between glucocorticoids and β2-agonists

  • Ian M. Adcock
  • D. A. Stevens
Conference paper


Glucocorticoids and β2-agonists may regulate gene transcription in a cell- and gene-specific manner at both the transcriptional and post-transcriptional level. For this transcription factor interaction to be of importance in asthma, it must occur in a cell or cells which are key targets for steroids and which also express surface β2-receptors and respond to β2-agonist stimulation with elevation of cAMP. Many pulmonary cells express β2-receptors and these same cells express GR. Airway epithelial cells, T-lymphocytes and macrophages are target cells an which this effect may be of therapeutic relevance, particularly as all produce cytokines which may orchestrate or perpetuate the allergic inflammatory response.

Asthma is due to a chronic inflammation of the airways and glucocorticoids are the most effective therapy currently available for the control of asthmatic inflammation. Indeed, inhaled steroids have now become the mainstay of chronic asthma therapy. Whereas β-agonists are most effective in treating the airways constriction associated with the onset of asthma symptoms and are often the only drug prescribed for the treatment of mild asthmatics although even at this stage of the disease there may well be ongoing, possibly irreversible, inflammatory changes in the airway [1]. β-Adrenoreceptor agonists and glucocorticoids are the two most effective treatments for asthma and are often used in combination. In this chapter we summarise the interactions between these drugs at a biochemical and molecular level and discuss the possible consequences for asthma therapy.


Glucocorticoid Receptor Airway Smooth Muscle cAMP Response Element Binding Myosin Light Chain Kinase Chloramphenicol Acetyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnes PJ (1995) Inhaled glucocorticoids for asthma. N Engl J Med 332: 868–875PubMedCrossRefGoogle Scholar
  2. 2.
    Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Revs 5: 25–44CrossRefGoogle Scholar
  3. 3.
    Truss M, Beato M (1993) Steroid hormone receptors: interaction with deoxyribo-nucleic acid and transcription factors. Endocrine Revs 14: 459–479Google Scholar
  4. 4.
    Truss M, Chalepakis G, Beato M (1992) Interplay of steroid hormone receptors and transcription factors on the mouse mammary tumour virus promoter. J Steroid Biochem Molec Biol 43: 365–378PubMedCrossRefGoogle Scholar
  5. 5.
    Jonat C, Rahmsdorf HJ, Park K-K, Cato ACB, Gebel S, Ponta H, Herrlich P (1990) Antitumour promotion and antiinflammation: down-modulation of AP-1 ( Fos/Jun) activity by glucocorticoid hormone. Cell 62: 1189–1204PubMedCrossRefGoogle Scholar
  6. 6.
    Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-KB and the glucocorticoid receptor. Proc Nat Acad Sci (USA) 91: 752–756CrossRefGoogle Scholar
  7. 7.
    Adcock IM, Brown CR, Gelder CM, Shirasaki H, Peters MJ, Barnes PJ (1995) Effects of glucocorticoids on transcription factor activation in human peripheral blood mononuclear cells. Am J Physiol 268: C331 — C338PubMedGoogle Scholar
  8. 8.
    Adcock IM, Gelder CM, Shirasaki H, Yacoub M, Barnes PJ (1992) Effects of steroids on transcription factors in human lung. Am Rev Respir Dis 143: A834Google Scholar
  9. 9.
    Adcock IM, Shirasaki H, Gelder CM, Peters MJ, Brown CR, Barnes PJ (1994) The effects of glucocorticoids on phorbol ester and cytokine stimulated transcription factor activation in human lung. Life Sci 55: 1147–1153PubMedCrossRefGoogle Scholar
  10. 10.
    Barnes PJ, Adcock IM (1993) Antiinflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci 14: 436–441PubMedCrossRefGoogle Scholar
  11. 11.
    Janknecht R, Hunter T (1996) A growing co-activator network. Nature 383: 22–23PubMedCrossRefGoogle Scholar
  12. 12.
    Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin S-C, Heyman RA, Rose DW, Glass CK, Rosenfeld MG (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414PubMedCrossRefGoogle Scholar
  13. 13.
    Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM (1996) Role of CBP/P300 in nuclear receptor signalling. Nature 383: 99–103PubMedCrossRefGoogle Scholar
  14. 14.
    Smith CL, Onate SA, Tsai M-J, O’Malley BW (1996) CREB binding protein acts synergistically with steroid receptor co-activator-1 to enhance steroid receptor-dependent transcription. Proc Natl Acad Sci USA 93: 8884–8888PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang X, Jeyakumar M, Bagchi MK (1996) Ligand-dependent cross-talk between steroid and thyroid receptors. J Biol Chem 271: 14825–14833PubMedCrossRefGoogle Scholar
  16. 16.
    Barnes PJ, Basbaum CB, Nadel JA, Roberts JM (1982) Localization of betaadrenoreceptors in mammalian lung by light microscopic autoradiography. Nature 299: 444–447PubMedCrossRefGoogle Scholar
  17. 17.
    Barnes PJ (1995) Beta-adrenergic receptors and their regulation Am J Respir Crit Care Med 152: 838–860PubMedGoogle Scholar
  18. 18.
    Torphy TJ (1994) γ-Adrenoceptors/cAMP and airway smooth muscle relaxation: challenges to the dogma. Trends Pharmacol Sci 15: 370–374PubMedCrossRefGoogle Scholar
  19. 19.
    Kume H, Graziano MP, Kotlikoff MI (1992) Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide-binding proteins. Proc Nat Acad Sci (USA) 89: 11051–11055CrossRefGoogle Scholar
  20. 20.
    Yamamoto KK, Gonzalez GA, Biggs WH III, Montminy MR (1989) Phosphorylation-iduced binding and transcriptional efficacy of nuclear factor CREB. Nature 334: 494–498CrossRefGoogle Scholar
  21. 21.
    Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675–680PubMedCrossRefGoogle Scholar
  22. 22.
    Sasaki K, Cripe TP, Koch SR, Andreone TL, Petersen DD, Beale EG, Granner DK (1984) Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. The dominant role of insulin. J Biol Chem 259: 15242–15251PubMedGoogle Scholar
  23. 23.
    Nigg EA, Hilz H, Eppenberger HM, Dutly F (1985) Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO J 4: 2801–2806PubMedGoogle Scholar
  24. 24.
    Kwok RPS, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG, Roberts SGE, Green MR, Goodman RH (1994) Nuclear protein CBP is a co-activator for the transcription factor CREB. Nature 370: 223–226PubMedCrossRefGoogle Scholar
  25. 25.
    Kobierski LA, Chu H-M, Tan Y, Comb MJ (1991) cAMP-dependent regulation of proenkephalin by JunD and JunB: positive and negative effects of AP-1 proteins Proc Natl Acad Sci USA 88: 10222–10226PubMedCrossRefGoogle Scholar
  26. 26.
    Masquilier D, Sassone-Corsi P (1992) Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J Biol Chem 267: 22460–22466PubMedGoogle Scholar
  27. 27.
    Wu J, Dent P, Jelinek T, Wolfman A, Weber MJ, Sturgill TW (1993) Inhibition of the EGF-activated MAP kinase signallling pathway by adenosine 3′,5′-monophosphate. Science 262: 1065–1069PubMedCrossRefGoogle Scholar
  28. 28.
    Serkkola E, Hurme M (1993) Synergism between protein-kinase C and cAMP-dependent pathways in the expression of the interleukin-113 gene is mediated via the activator-protein-1 (AP-1) enhancer activity. Eur J Biochem 213: 243–249PubMedCrossRefGoogle Scholar
  29. 29.
    Hai T, Curran T (1991) Cross family dimerisation of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88: 3720–3724PubMedCrossRefGoogle Scholar
  30. 30.
    Lalli E, Sassone-Corsi P (1994) Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem 269: 17359–17362PubMedGoogle Scholar
  31. 31.
    Collins S, Bouvier M, Bolanowski MA, Caron MG, Lefkowitz RJ (1989) cAMP stimulates transcription of the beta 2-adrenergic receptor gene in response to short term agonist exposure. Proc Natl Acad Sci USA 86: 4853–4857PubMedCrossRefGoogle Scholar
  32. 32.
    Collins S, Altschmied J, Herbsman O, Caron MG, Mellon PL, Lefkowitz RJ (1990) A cAMP response element in the beta 2-adrenergic receptor gene confers transcriptional autoregulation by cAMP. J Biol Chem 265: 19330–19335PubMedGoogle Scholar
  33. 33.
    Hadcock JR, Malbon CC (1988) Regulation of beta-adrenergic receptors by “permissive” hormones: glucocorticoids increase steady-state levels of receptor mRNA. Proc Natl Acad Sci USA 85: 8415–8419PubMedCrossRefGoogle Scholar
  34. 34.
    Mak JCW, Nishikawa M, Barnes PJ (1995) Glucocorticosteroids increase β2-adrenergic receptor transcription in human lung. Am J Physiol 268: L41 - L46PubMedGoogle Scholar
  35. 35.
    Nishikawa M, Mak JC, Shirasaki H, Barnes PJ (1993) Differential down-regulation of pulmonary beta 1- and beta 2-adrenocepter messenger RNA with prolonged in vivo infusion of isoprenaline. Eur J Pharmacol 247: 131–138PubMedCrossRefGoogle Scholar
  36. 36.
    Davis AO, Lefkowitz RJ (1984) Regulation of β-adrenergic receptors by steriod hormones. Annu Rev Physiol 46: 119–130CrossRefGoogle Scholar
  37. 37.
    Kobilka BK, Frielle T, Dohlman HG, Bolanowski MA, Dixon RAF, Keller P, Caron MG, Lefkowitz RJ (1987) Delineation of the intronless nature of the genes for the human and hamster β2-adrenergic receptor and their putative promoter regions. J Biol Chem 262: 7321–7327PubMedGoogle Scholar
  38. 38.
    Malbon CC, Hadcock JR (1988) Evidence that glucocorticoid response elements in the 5’ -noncoding region of the hamster beta 2-adrenergic receptor gene are obligate for glucocorticoid regulation of receptor mRNA levels. Biochem Biophys Res Commun 154: 676–681PubMedCrossRefGoogle Scholar
  39. 39.
    Dooley DJ, Bittiger H, Reymann NC (1986) CGP 20712 A: a useful tool for quantitating β1- and β2- adrenoceptors. Eur J Pharmacol 130: 137–139PubMedCrossRefGoogle Scholar
  40. 40.
    Mak JCW, Nishikawa M, Shirasaki H, Miyayasu K, Barnes PJ (1995) Protective effects of dexamethasone on isoproterenol-induced down-regulation of pulmonary β2R. J Clin Invest 96: 99–106PubMedCrossRefGoogle Scholar
  41. 41.
    Galant SP, Duriseti L, Underwood S, Insel PA (1978) Decreased betaadrenergic receptors on polymorphonuclear leukocytes after adrenergic therapy. N Engl J Med 299: 933–936PubMedCrossRefGoogle Scholar
  42. 42.
    Hauck RW, Bohm M, Gengenbach S, Sunder-Plassmann L, Fruhmann G, Erdmann E (1990) Beta 2-adrenoceptors in human lung and peripheral mononuclear leukocytes of untreated and terbutaline-treated patients. Chest 98: 376–381PubMedCrossRefGoogle Scholar
  43. 43.
    Schule R, Muller M, Otsuka-Murakami H, Renkawitz R (1988) Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor. Nature 332: 87–90PubMedCrossRefGoogle Scholar
  44. 44.
    Strahle U, Schmid W, Schutz G (1988) Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J 7: 3389–3395PubMedGoogle Scholar
  45. 45.
    Stauber C, Altschmied J, Akerblom IE, Marron JL, Mellon PL (1992) Mutual cross-interference between glucocorticoid receptor and CREB inhibits transactivation in placental cells. New Biologist 4: 527–540PubMedGoogle Scholar
  46. 46.
    Peters MJ, Adcock IM, Brown CR, Barnes PJ (1995) β-Adrenoceptor agonists interfere with glucocorticoid receptor DNA binding in rat lung. Eur J Pharm (Mol Pharm) 289: 275–281CrossRefGoogle Scholar
  47. 47.
    Drouin J, Charron J, Gagner JP, Jeannotte L, Nemer M, Plante RK, Wrange O (1987) Pro-opiomelanocortin gene: a model for negative regulation of transcription by glucocorticoids. J Cell Biochem 35: 293–304PubMedCrossRefGoogle Scholar
  48. 48.
    Schule R, Rangarajan P, Kliewer S, Ransome LJ, Bolado J, Yang N, Verma IM, Evans RM (1990) Functional antagonism between onco-protein c-jun and the glucocorticoid receptor. Cell 62: 1217–1226PubMedCrossRefGoogle Scholar
  49. 49.
    Yang-Yen H-F, Chambard J-C, Sun Y-L, Smeal T, Schmidt TJ, Drouin J, Karin M (1990) Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62: 1205–1215PubMedCrossRefGoogle Scholar
  50. 50.
    Mukaida N, Morita M, Ishikawa Y, Rice N, Okamoto S, Kasahari T, Matsushima K (1994) Novel mechanism of glucocorticoid-mediated gene repression. Nuclear factor kappa B is the target for glucocorticoid-mediated interleukin-8 gene repression. J Biol Chem 269: 13289–13295PubMedGoogle Scholar
  51. 51.
    Newton R, Kuitert LM, Bergmann M, Adcock IM, Barnes PJ (1997) Evidence for involvement of NF-xB in the transcriptional control of cox-2 gene expression by IL-lβ. Biochem Biophys Res Comm 237: 46–50CrossRefGoogle Scholar
  52. 52.
    Scarceriaux V, Pelaprat D, Forgez P, Lhiaubert AM, Rostene W (1995) Effects of dexamethasone and forskolin on neurotensin production in rat hypothalamic cultures. Endocrinology 136: 2554–2560PubMedCrossRefGoogle Scholar
  53. 53.
    Kathju S, Heaton JH, Bruzdzinski CJ, Gelehrter TD (1994) Synergistic induction of tissue-type plasminogen activator gene expression by glucocorticoids and cyclic nucleotides in rat HTC hepatoma cells. Endocrinology 135: 1195–1204PubMedCrossRefGoogle Scholar
  54. 54.
    Hinko A, Soloff MS (1993) Up-regulation of oxytocin receptors in rabbit amnion by glucocorticoids: potentiation by cyclic adenosine 3’,5’-monophosphate. Endocrinology 133: 1511–1519PubMedCrossRefGoogle Scholar
  55. 55.
    Michel MC, Knapp J, Ratjen H (1994) Sensitisation by dexamethasone of lymphocyte cyclic AMP formation: evidence for increased function of the adenylyl cyclase catalyst. Br J Pharmacol 113: 240–246PubMedGoogle Scholar
  56. 56.
    Liu J-L, Papachristou DN, Patel YC (1994) Glucocorticoids activate somatostatin gene transcription through cooperative interaction with the cyclic AMP signalling pathway. Biochem J 301: 863–869PubMedGoogle Scholar
  57. 57.
    Dong Y, Aronsson M, Gustaffson J-A, Okret S (1989) The mechanism of cAMP-induced glucocorticoid receptor expression: Correlation to cellular glucocorticoid response. J Biol Chem 264: 13679–13683PubMedGoogle Scholar
  58. 58.
    Nordeen SK, Moyer ML, Bona BJ (1994) The coupling of multiple signal transduction pathways with steroid response mechanisms. Endocrinology 134: 1723–1732PubMedCrossRefGoogle Scholar
  59. 59.
    Imai E, Miner JN, Mitchell JA, Yamamoto KR, Granner DK (1993) Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J Biol Chem 268: 5353–5356PubMedGoogle Scholar
  60. 60.
    Jenab S, Inturrisi CE (1995) Proenkephalin gene expression: interaction of glucocorticoid and cAMP regulatory elements. Biochem Biophys Res Comm 210: 589–599.PubMedCrossRefGoogle Scholar
  61. 61.
    Newton R, Kuitert LM, Barnes PJ, Adcock IM (1995) Stimulation of COX-2 message by cytokines of phorbol ester is preceded by a massive and rapid induction of NF-1(13 binding activity. Am J Resp Crit Care Med 151: A165Google Scholar
  62. 62.
    Kunz D, Walker G, Pfeilschifter J (1994) Dexamethasone differentially affects interleukin β- and cAMP-induced nitric oxide synthase mRNIt expression in renal mesangial cells. Biochem J 304: 337–340PubMedGoogle Scholar
  63. 63.
    Franckhauser S, Antras-Ferry J, Robin P, Robin D, Granner DK, Forest C et al (1995) Expression of the phosphoenolpyruvate carboxykinase gene in 3T3–F442A adipose cells: opposite effects of dexamethasone and isoprenaline on transcription. Biochem J 305: 65–71PubMedGoogle Scholar
  64. 64.
    Beale EG, Chrapkiewicz NB, Scoble HA, Metz RJ, Quick DP, Noble RL, Donelson JE, Biemann K, Granner DK (1985) Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP). Structures of the protein, messenger RNA, and gene. J Biol Chem 260: 10748–60PubMedGoogle Scholar
  65. 65.
    Slieker LJ, Sloop KW, Surface PL, Kriauciunas A, LaQuier F, Manetta J, Bue-Valleskey J, Stephens TW (1996) Regulation of ob mRNA and protein by glucocorticoids and cAMP. J Biol Chem 271: 5301–5304PubMedCrossRefGoogle Scholar
  66. 66.
    Schmoll D, Allan BB, Burchall A (1996) Cloning and sequencing of the 5’ region of the human glucose-6-phosphate gene: transcriptional regulation by cAMP, insulin and glucocorticoids in H4IIE cells. FEBS Letts 383: 63–66CrossRefGoogle Scholar
  67. 67.
    Pennie WD, Hager GL, Smith CL (1995) Nucleoprotein structure influences the response of the mouse mammary tumor virus promoter to activation of the cyclic AMP signalling pathway. Mol Cell Biol 15: 2125–2134PubMedGoogle Scholar
  68. 68.
    Peters MJ, Adcock IM, Brown CR, Barnes PJ (1993) β-Agonist inhibition of steroid-receptor DNA binding activity in human lung. Am Rev Respir Dis 147: A772Google Scholar
  69. 69.
    Stevens DA, Barnes PJ, Adcock IM (1995) β-Agonists inhibit DNA binding of glucocorticoid receptors in human pulmonary and bronchial epithelial cells. Am J Respir Crit Care Med 151: A195Google Scholar
  70. 70.
    Adcock IM, Peters MJ, Kwon OJ, Corrigan G, Barnes PJ (1994) Glucocorticoid receptor interactions with cAMP response element binding protein (CREB) in specific target cells in the lung. Am J Respir Crit Care Med 149: A 1026Google Scholar
  71. 71.
    Carstairs JR, Nimmo AJ, Barnes PJ (1985) Autoradiographic visualization of beta-adrenoreceptor subtypes in human lung. Am Rev Respir Dis 132: 541–547PubMedGoogle Scholar
  72. 72.
    Adcock IM, Gilbey T, Gelder CM, Chung KF, Barnes PJ (1996) Glucocorticoid receptor localisation in normal and asthmatic lung. Am J Respir Crit Care Med 154: 771–782PubMedGoogle Scholar
  73. 73.
    Arai K, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T (1990) Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 59: 783–836PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • Ian M. Adcock
    • 1
  • D. A. Stevens
    • 1
  1. 1.Department of Thoracic MedicineImperial College School of Medicine at NHLILondonUK

Personalised recommendations