Skip to main content

Free radicals in Alzheimer’s disease

  • Conference paper

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 54))

Summary

Alzheimer’s disease is a neurodegenerative disorder comprising multisystem atrophies probably caused by multifactorial processes. The disease is characterized by typical neuropathology, impaired synaptic function and massive cell loss. The pathobiochemistry of this disorder involves oxidative stress, which accumulates free radicals leading to excessive lipid peroxidation and neuronal degeneration in certain brain regions. Moreover, radical induced disturbances of DNA, proteins and lipid membranes have been measured. The hypothesis has been proposed that cellular events involving oxidative stress may be one basic pathway leading to neurodegeneration in Alzheimer’s disease. In this work we report evidence for increased oxidative stress and disturbed defense mechanisms in Alzheimer’s disease, which may result in a self-propagating cascade of neurodegenerative events. Furthermore it is evident from experimental data, that aggregation of β-amyloid and β-amyloid toxicity is favourably caused by oxidative stress. Therefore, oxidative stress plays a key role in the conversion of soluble to unsoluble β-amyloid, suggesting that oxidative stress is primary to the β-amyloid cascade.

Alzheimer’s disease represents the most common cause of senile dementia. However, since the first clinical and neuropathological description 90 years ago (Alzheimer, 1907) etiology and exact pathogenesis of this disease is still not clear. Pathological presentation of Alzheimers disease involves regionalized, transmitter-specific neuronal loss (Braak and Braak, 1991; Greenamyre and Maragos, 1993), synaptic pathology (Adams, 1991) and an accumulation of intracellular and extracellular protein aggregates presenting as neurofibrillary tangles and senile plaques respectively. These prominent neuropathological abnormalities have focused scientific interest on several independent parameters, which have been suggested to be responsible for these pathological changes, including hyperphosphorylation of cytoskeletal proteins (tau-protein), metabolism of β-amyloid and the β-amyloid precursor protein (APP) and the polymorphism of apolipoprotein E (APO-E). There is strong evidence that changes of brain glucose metabolism (Hoyer, 1996), mitochondrial disturbances (Wallace, 1992; Beal, 1996), excitotoxicity (Shaw, 1992), immunological processes (Bauer and Berger, 1993) and the biosynthesis of advanced glycation end products (AGEs) (Thome et al., 1996) might be primary responsible for Alzheimer’s disease pathology. At present, there is no conclusive hypothesis to unify the enormous number of neuropathological and neurochemical findings. It has been concluded, that Alzheimer’s disease might be a heterogenous disease (St George-Hyslop et al., 1990), with a wide spectrum of etiological factors, each of which is able to originate a cascade of pathological processes, leading to an at least uniform condition presenting clinically as dementia.

However, there is now a confluence of opinion that free radical oxidative stress plays a key role among the factors of this pathogenetic cascade of Alzheimer’s disease (Benzi and Moretti, 1995). Oxygen free radicals are of particular interest, because of their interactions with almost all hypotheses about the pathogenesis of Alzheimer’s disease, and the formation of unsoluble beta-amyloid in particular. Moreover, damage due to oxidative stress accumulates with age (Benzi et al., 1989) and age is the most important risk factor for Alzheimer’s disease (Bachman et al., 1993).

Oxygen free radicals are formed as by-products of respiration and oxidative metabolism in all aerobic organisms. It is well established that the generation of radical molecules can lead to damage or destruction of a variety of tissues (McCord and Fridovich, 1988). Consequences of excessive reactive oxygen species are lipid peroxidation, oxidation of proteins and damage of DNA (Götz et al., 1994). It has been hypothesized, that normal aging is a result of permanent oxidative stress (Harman, 1956). Normal age-related radical damage is caused by environmental factors (chemicals, UV radiation, cosmic rays) and endogenous factors including the constant electron leakage in the mitochondrial respiratory chain (Zoccarato et al., 1988), the generation of superoxide and hydrogen peroxide by several enzyme systems, the formation of alkoxy and peroxy radicals from lipids, autooxidation and oxidative deamination of dopamine and the catalytic activity of iron (Götz et al., 1994). On the other hand detoxifying enzymes, e.g. glutathione peroxidase, gluthathione reductase, superoxide dismutase and catalase together with antioxidant mechanisms such as the glutathione system and vitamin E, C and A are involved in the defense system against radical injury (Halliwell and Gutteridge, 1984). An imbalance between the formation of oxygen free radicals due to a increased biosythesis or intake of toxins generating radicals and the protective mechanisms has been proposed as a major factor not only for normal aging, but also for pathological neurodegenerative processes and Alzheimer’s disease in particular (Götz et al., 1994; Smith et al., 1995a).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams IM (1991) Structural plasticity of synapses in Alzheimer’s disease. Mol Neurobiol 5: 411–419

    Article  PubMed  CAS  Google Scholar 

  • Adams JD, Klaidman LK, Odunze IN, Shen HC, Miller CA (1991) Alzheimer’s disease and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol Chem Neuropathol 14: 213–226

    Article  CAS  Google Scholar 

  • Adolfsson R, Gottfries C-G, Oreland L, Wiberg A, Winblad B (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27: 1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Ahlskog JE, Uitti RJ, Low PA, Tyce GM, Nickander KK, Petersen RC, Kokmen E (1995) No evidence for systemic oxidant stress in Parkinson’s or Alzheimer’s disease. Mov Disord 10: 566–573

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiat 64: 146–148

    Google Scholar 

  • Andorn AC, Britton RS, Bacon BR (1990) Evidence that lipid peroxidation and total iron are increased in Alzheimer’s brain [abstract]. Neurobiol Aging 11: 316

    Google Scholar 

  • Anneren G, Gardner A, Lundin T (1986) Increased glutathion peroxidase activity in erythrocytes in patients with Alzheimer’s disease/senile dementia of Alzheimer’s type. Acta Neurol Scand 73: 586–589

    Article  PubMed  CAS  Google Scholar 

  • Aruoma OI, Halliwell B, Laughton MJ, Quinlan GJ, Gutteridge JMC (1989) The mechanism of initiation of lipid peroxidation. Evidence against a requirement for an iron(II)-iron(III) complex. Biochem J 258: 617–620

    PubMed  CAS  Google Scholar 

  • Bachman DL, Wolf PA, Linn RT, Knoefel JE, Cobb JL, Belanger AJ, White LR, D’Agostino RB (1993) Incidence of dementia and probable Alzheimer’s disease in a general population: the Framingham Study. Neurology 43: 515–519

    Article  PubMed  CAS  Google Scholar 

  • Balazs L, Leon M (1994) Evidence of an oxidative challenge in the Alzheimer’s brain. Neurochem Res 19: 1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK, Marder SR (1994) In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol Psychiatry 35: 480–487

    Article  PubMed  CAS  Google Scholar 

  • Bauer J (1994) Die Alzheimer Krankheit. Neurobiologie, Psychosomatik, Diagnostik und Therapie. Schattauer, Stuttgart

    Google Scholar 

  • Bauer J, Berger M (1993) Neuropathologie, Immunologie und psychobiologische Aspekte der Alzheimer Krankheit. Fortschr Neurol Psychiatr 61: 225–240

    Article  PubMed  CAS  Google Scholar 

  • Banyes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–412

    Article  Google Scholar 

  • Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38: 357–366

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (1996) Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol 6: 661–666

    Article  PubMed  CAS  Google Scholar 

  • Benzi G, Moretti A (1995) Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol Aging 16: 661–674

    Article  PubMed  CAS  Google Scholar 

  • Benzi G, Marzatico F, Pastoris O, Villa RF (1989) Influence of oxidative stress on the age-linked alterations of the cerebral glutathione system. J Neurosci Res 26: 120–128

    Article  Google Scholar 

  • Blass JP, Baker AC, Ko L, Black RS (1990) Induction of Alzheimer antigen an uncoupler of oxidative phosphorylation. Arch Neurol 47: 864–869

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82: 239–259

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Ceballos-Picot I, Merad-Boudia M, Nicole A, Thevenin M, Hellier G, Legrain S, Berr C (1996) Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer’s type — place of the extracellular glutathion peroxidase. Free Radic Biol Med 20: 579–587

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Richardson JS, Caldwell JE, Ang LC (1994) Regional brain activity of free radical defense enzymes in autopsy samples from patients with Alzheimer’s disease and from nondemented controls. Int J Neurosci 75: 83–90

    Article  PubMed  CAS  Google Scholar 

  • Colton CA, Gilbert DL (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223: 284–288

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992a) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31: 327–335

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL, St. Martin SM, Mufson EJ (1992b) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. Neurosci Res 31: 75–83

    Article  CAS  Google Scholar 

  • Connor JR, Tucker P, Johnson M, Snyder B (1993) Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease. Neurosci Lett 159: 88–90

    Article  PubMed  CAS  Google Scholar 

  • Danielczyk W, Streifler M, Konradi C, Riederer P, Moll G (1988) Platelet MAO-B activity and the psychopathology of Parkinson’s disease, senile dementia and multiinfarct dementia. Acta Psychiatr Scand 78: 730–736

    Article  PubMed  CAS  Google Scholar 

  • Delamarche C (1989) A homologous domain between the amyloid protein of Alzheimer’s disease and the neurofilament subunits. Biochimie 71: 853–856

    Article  PubMed  CAS  Google Scholar 

  • Dyrks T, Dyrks E, Hartmann T, Masters C, Beyreuther KE (1992) Amyloidogenicity of β A4 and β A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J Biol Chem 267: 18210–18217

    PubMed  CAS  Google Scholar 

  • Ebrahim S, Schupf S, Silverman W, Zigman WB, Moretz RC, Wisniewski HM, Taylor E, Devakumar M, Lindegard B, Lindesay J, Grant DJ, McMurdo MET, Corrigan FM, Reynolds GP, Ward NI, Farrar G, Blair JA, Curran S, Hindmarch I, Steer C (1989) Aluminium and Alzheimer’s disease. Lancet ii: 267–269

    Article  Google Scholar 

  • Ehmann WD, Markesbery WR, Alauddin M, Hossain TIM, Brubaker EH (1986) Brain trace elements in Alzheimer’s disease. Neurotoxicology 7: 195–206

    PubMed  CAS  Google Scholar 

  • Fischer P, Götz ME, Ellinger B, Streifler M, Riederer P, Danielczyk W (1994) Platelet monoamine oxidase B activity and vitamin B12 in dementia. Biol Psychiat 35: 772–774

    Article  PubMed  CAS  Google Scholar 

  • Fleming J, Joshi JG (1987) Ferritin: isolation of aluminium-ferritin complex from brain. Proc Natl Acad Sci 84: 7866–7870

    Article  PubMed  CAS  Google Scholar 

  • Frölich L, Riederer P (1995) Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidative treatment. Arzneimittelforschung 43: 443–446

    Google Scholar 

  • Gautrin D, Gauthier S (1989) Alzheimer’s disaese: environmental factors and etiologic hypothesis. Can J Neurol Sci 16: 375–387

    PubMed  CAS  Google Scholar 

  • Gerlach M, Ben Shachar D, Riederer P, Youdim MB (1994) Altered metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63: 793–807

    Article  PubMed  CAS  Google Scholar 

  • Götz ME, Freyberger A, Hauer E, Burger R, Sofic E, Gsell W, Heckers S, Jellinger K, Hebenstreit G, Frölich L, Beckmann H, Riederer P (1992) Susceptibility of brains from patients with Alzheimer’s disease to oxygen-stimulated lipid peroxidation and differential scanning calorimetry. Dementia 3: 213–222

    Google Scholar 

  • Götz ME, Dirr A, Freyberger A, Burger R, Riederer P (1993) The thiobarbituric acid assay reflects susceptibility to oxygen-induced lipid peroxidation in vitro rather than levels of lipid hydroperoxides in vivo: a methodological approach. Neurochem Int 22: 255–262

    Article  PubMed  Google Scholar 

  • Götz ME, Künig G, Riederer P, Youdim MBH (1994) Oxidative stress: free radical production in neuronal degeneration. Pharmac Ther 63: 37–122

    Article  Google Scholar 

  • Götz ME, Fischer P, Gsell W, Riederer P, Streifler M, Simanyi M, Müller F, Danielczyk W (1998) Platelet monoamine oxidase B activity in dementia: a 4 Year follow up. Dementia 9: 74–77

    Google Scholar 

  • Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminium and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31: 286–292

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Maragos WF (1993) Neurotransmitter receptors in Alzheimer disease. Cerebrovasc Brain Metab Rev 5: 61–94

    PubMed  CAS  Google Scholar 

  • Greenlund LJ, Deckwerth TL, Johnson EM Jr (1995) Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14: 303–315

    Article  PubMed  CAS  Google Scholar 

  • Grootveld M, Halliwell B (1986) Aromatic hydroxylation as a potential measure of hydroxyl radical formation in vivo. Biochem J 237: 499–504

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Fleming J, Tung YC, Lassmann H, Iqbal K, Joshi JG (1990) Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol (Berl) 81: 105–110

    Article  CAS  Google Scholar 

  • Gsell W, Conrad R, Hickethier M, Sofic E, Frölich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H, Riederer P (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brain of patients with dementia of Alzheimer type. J Neurochem 64: 1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JM, Quinlan GJ, Clark I, Halliwell B (1985) Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 835: 441–447

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Oxygen toxicity, transition metals and disease. Biochem J 219: 1–14

    PubMed  CAS  Google Scholar 

  • Hajimohammadreza I, Brammer M (1990) Brain membrane fluidity and lipid peroxidation in Alzheimer’s disease. Neurosci Lett 112: 333–337

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Ageing: a theory based on free radical and rediation chemistry. J Gerontol 11: 298–300

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (1996) Oxidative metabolism deficiencies in brains of patients with Alzheimer’s disease. Acta Neuropathol Scand [Suppl] 165: 18–24

    Article  CAS  Google Scholar 

  • Jeandel C, Nicolas MB, Dubois F, Nabet-Belleville F, Penin F, Cuny G (1989) Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology 35: 275–282

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MB 1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm [PD-Sect] 2: 327–340

    Article  CAS  Google Scholar 

  • Kala SV, Hasinoff BB, Richardson JS (1996) Brain samples from Alzheimer’s patients have elevated levels of loosely bound iron. Int J Neurosci 86: 263–269

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Kalaria RN, Cras P, Siedlak SL, Velasco ME, Shelton ER, Chan HW, Greenberg BD, Perry G (1993) Degeneration of vascular muscle cells in cerebral amyloid angiopathy of Alzheimer’s disease. Brain Res 623: 142–146

    Article  PubMed  CAS  Google Scholar 

  • Kawamata T, Tooyama I, Yamada T, Walker DG, McGeer PL (1993) Lactotransferrin immunocytochemistry in Alzheimer and normal human brain. Am J Pathol 142: 1574–1585

    PubMed  CAS  Google Scholar 

  • Kish SJ, Morito CL, Hornykiewicz O (1986) Brain glutathione peroxidase in neurodegenerative disorders. Neurochem Pathol 4: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain of Alzheimer’s disease. Neurology 45: 1594–1601

    Article  PubMed  CAS  Google Scholar 

  • Maggio JE, Stimson ER, Ghilardi JR, Allen CJ, Dahl CE, Whitcomb DC, Vigna SR, Vinters HV, Labenski ME, Mantyh PW (1992) Reversible in vitro growth of Alzheimer disease beta-amyloid plaques by deposition of labeled amyloid peptide. Proc Natl Acad Sci USA 89: 5462–5466

    Article  PubMed  CAS  Google Scholar 

  • Makar TK, Cooper AJ, Tofel-Grehl B, Thaler HAT, Blass JP (1995) Carnitine, carnitine acetyltransferase, and glutathione in Alzheimer brain. Neurochem Res 20: 705–711

    Article  PubMed  CAS  Google Scholar 

  • Margaglione M, Garofano R, Cirillo F, Ruocco A, Grandone E, Vecchione G, Milan G, di Minno G, de Blasi A, Postiglione A (1995) Cu/Zn superoxide dismutase in patients with non-familial Alzheimer’s disease. Aging Milano 7: 49–54

    PubMed  CAS  Google Scholar 

  • Markesberry W, Ehmann WD (1994) In: Terry RD, Katzman R, Bick L (eds) Alzheimer’s disease. Raven Press, New York, pp 353–367

    Google Scholar 

  • Marklund SL, Adolffson R, Gottfries CG, Winblad B (1985) Superoxide isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J Neurol Sci 67: 319–325

    Article  PubMed  CAS  Google Scholar 

  • Marttila RJ, Röytta M, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in the human brain. J Neural Transm 74: 87–95

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12: 379–389

    Google Scholar 

  • McCord J, Fridovich I (1988) Superoxide dismutase: the first twenty Years (1968–1988). Free Radic Biol Med 5: 363–369

    Article  PubMed  CAS  Google Scholar 

  • McMillian M, Kong LY, Sawin SM, Wilson B, Das K, Hudson P, Hong JS, Bing G (1995) Selective killing of cholinergic neurons by microglial activation in basal forebrain mixed neuronal/glial cultures. Biochem Biophys Res Commun 215: 572–577

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe T, Bowen DM, Müller DP (1989) Vitamin E concentrations in human brain from patients with Alzheimer’s disease, fetuses with Down’s syndrome, cetenarians, and controls. Neurochem Res 14: 1209–1212

    Article  PubMed  CAS  Google Scholar 

  • Meccoci P, MacGarvey MS, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36: 747–751

    Article  Google Scholar 

  • Morris CM, Candy JM, Kerwin JM, Edwardson JA (1994) Transferrin receptors in the normal human hippocampus and in Alzheimer’s disease. Neuropathol Appl Neurobiol 20: 473–477

    Article  PubMed  CAS  Google Scholar 

  • Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism of accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173: 923–929

    Article  Google Scholar 

  • Nitsch RM, Pittas AG, Blusztajin JK, Slack BE, Growdon HJ (1991) Alterations of phospholipid metabolites in postmortem brain from patients with Alzheimer’s disease. Ann NY Acad Sci 640: 110–113

    PubMed  CAS  Google Scholar 

  • Nitsch RM, Blusztajin JK, Pittas AG, Slack BE, Growdon JH, Wurtman RD (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci 89: 1671–1675

    Article  PubMed  CAS  Google Scholar 

  • Oreland L, Gottfries CG (1986) Brain monoamine oxidase in aging and in dementia of Alzheimer type. Prog Neuropsychopharmacol Biol Psychiatry 10: 533–540

    Article  PubMed  CAS  Google Scholar 

  • Palmer AM, Burns MA (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease. Brain Res 645: 338–342

    Article  PubMed  CAS  Google Scholar 

  • Perl DP, Good PF (1992) Aluminium and the neurofibrillary tangle: results of tissue microprobe studies. Ciba Found Symp 169: 217–227

    PubMed  CAS  Google Scholar 

  • Perrin R, Briancon S, Jaendel C, Artur Y, Min A, Penin F, Siest G (1990) Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer’s disease: a case-control study. Gerontology 36: 306–313

    Article  PubMed  CAS  Google Scholar 

  • Quinlan GJ, Halliwell B, Moorhouse CP, Gutteridge JMC (1988) Action of lead(II) and aluminium(III) ions on iron-stimulated lipid peroxidation in liposomes, erythrocytes and rat liver microsomal fractions. Biochim Biophys Acta 962:196–200

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS (1993) Free radicals in the genesis of Alzheimer’s disease. Ann NY Acad Sci 695: 73–76

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Youdim MBH (1993) The therapeutic place and value of present and future MAO-B inhibitors — L-deprenyl as the gold standard. In: Szeleny I (ed) Inhibitors of monoamine oxidase B. Pharmacology and clinical use in neurodegenerative disorders. Birkhäuser, Basel, pp 327–338

    Google Scholar 

  • Selkoe DJ, Ihara Y, Salazar F (1982) Alzheimer disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science 215: 1243–1245

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ (1992) Excitatory amino acid neurotransmission, excitotoxicity and excitotoxins. Curr Opin Neurol Neurosurg 5: 383–390

    PubMed  CAS  Google Scholar 

  • Smith CD, Corney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein peroxidation and enzyme dysfunction in normal aging and Alzheimer’s disease. Am J Pathol 145: 42–47

    Google Scholar 

  • Smith MA, Taneda S, Richey PL, Yan S-D, Sayre LM, Monnier VM, Perry G (1994) Advanced Mallard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 91: 5710–5714

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Sayre L, Perry G (1995a) Is Alzheimer’s a disease of oxidative stress? Alz Dis Rev 1: 63–67

    Google Scholar 

  • Smith MA, Sayre ML, Monnier VM, Perry G (1995b) Radical AGEing in Alzheimer’s disease. Trends Neurosci 18: 172–176

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996a) Oxidative damage in Alzheimer’s. Nature 382: 120–121

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Sayre ML, Monnier VM, Perry G (1996b) Oxidative posttranslational modifications in Alzheimer disease. A possible pathogenetic role in the formation of senile plaques and neurofibrillary tangles. Mol Chem Neuropathol 28: 41–48

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Frölich L, Riederer P, Jellinger K, Heckers S, Beckmann H, Deinzer E, Pantucek F, Hebenstreit G, Ransmayr (1991) Biochemical membrane constituents and activities of alkaline and acid phosphatase and cathepsin in cortical and subcortical brain areas in dementia of the Alzheimer type. Dementia 2: 39–44

    Google Scholar 

  • St George-Hyslop PH, Haines JL, Farrer, Polinsky R, van Broeckhoven C, Goate A, McLachlan DR, Orr H, Bruni HC (1990) Genetic linkage studies suggest that Alzheimer’s disease is not a single homogeneous disorder. FAD Collaborative Study Group. Nature 347: 194–197

    Article  PubMed  CAS  Google Scholar 

  • Subbarao KV, Richardson JS, Ang LC (1990) Autopsy samples of Alzheimer’s cortex show increased lipid peroxidation in vitro. J Neurochem 55: 342–345

    Article  PubMed  CAS  Google Scholar 

  • Sulkava R, Nordberg UR, Erkinjuntti T, Westermarck T (1986) Erythrocyte glutathione peroxidase and superoxide dismutase in Alzheimer’s disease and other dementias. Acta Neurol Scand 73: 487–489

    Google Scholar 

  • Thome J, Kornhuber J, Münch G, Schinzel R, Taneli Y, Zielke B, Rösler M, Riederer P (1996) Neue Hypothese zur Athiopathogenese des Alzheimer-Syndroms — Advanced glycation end products (AGEs). Nervenarzt 67: 924–929

    Article  PubMed  CAS  Google Scholar 

  • Thome J, Zhang J, Davids E, Foley P, Weijers H-G, Wiesbeck GA, Böning J, Riederer P, Gerlach M (1997a) Evidence for increased oxidative stress in alcohol-dependent patients provided by quantification of in vivo salicylate hydroxylation products. Alcohol Clin Exp Res 21: 82–85

    Article  PubMed  CAS  Google Scholar 

  • Thome J, Gsell W, Rösier M, Kornhuber J, Frölich L, Hashimoto E, Zielke B, Wiesbeck GA, Riederer P (1997b) Oxidative-stress associated parameters (lactoferrin, superoxide dismutase) in serum of patients with Alzheimer’s disease. Life Sci 60: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Thompson CM, Markesbery WR, Ehmann WD, Mao YX, Vance DE (1988) Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9: 1–7

    PubMed  CAS  Google Scholar 

  • Troncoso JC, Costello A, Watson AL, Johnson GVW (1993) In vitro polymerization of oxidized tau into filaments. Brain Res 613: 313–316

    Article  PubMed  CAS  Google Scholar 

  • Urakami K, Sato K, Okada A, Mura T, Shimomura T, Takenaka T, Wakutani Y, Oshima T, Adachi Y, Takahashi K et al. (1995) Cu, Zn superoxide dismutase in patients with dementia of the Alzheimer type. Acta Neurol Scand 91: 165–168

    Article  PubMed  CAS  Google Scholar 

  • van Rensburg SJ, Carstens ME, Potocnik FC, van der Spuy G, van der Walt BJ, Taljaard JJ (1995) Transferrin C2 and Alzheimer’s disease: another piece of the puzzle found? Med Hypotheses 44: 268–272

    Article  PubMed  Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 91: 4766–4770

    Article  PubMed  CAS  Google Scholar 

  • Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z, Liu FT, Cerami A (1995) Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med 1:634–646

    PubMed  CAS  Google Scholar 

  • Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256: 628–632

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-b peptide neurotoxicity in Alzheimer’s disease. Nature 382: 685–691

    Article  PubMed  CAS  Google Scholar 

  • Zaman Z, Roche S, Fielden P, Frost PG, Niriella DC, Cayley AC (1992) Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. Age Ageing 21: 91–94

    Article  PubMed  CAS  Google Scholar 

  • Zemlan FP, Thienhaus OJ, Bosmann HB (1989) Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation. Brain Res 476: 160–162

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Richardson JS, Mombourquette MJ, Weil JA (1995) Free radical formation in autopsy samples of Alzheimer and control cortex. Neurosci Lett 195: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Zoccarato F, Cavallini L, Deana R, Alexandre A (1988) Pathways of hydrogen peroxide generation in guinea pig cerebral cortex mitochondria. Biochem Biophy Res Commun 154: 727–734

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag/Wien

About this paper

Cite this paper

Retz, W., Gsell, W., Münch, G., Rösler, M., Riederer, P. (1998). Free radicals in Alzheimer’s disease. In: Gertz, HJ., Arendt, T. (eds) Alzheimer’s Disease — From Basic Research to Clinical Applications. Journal of Neural Transmission. Supplementa, vol 54. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7508-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7508-8_22

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83112-0

  • Online ISBN: 978-3-7091-7508-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics