Skip to main content

Pathological immuno-reactions of glial cells in Alzheimer’s disease and possible sites of interference

  • Conference paper

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 54))

Summary

A significant role of a pathological glial cell activation in the pathogenesis of Alzheimer’s disease is supported by the growing evidence that inflammatory proteins, which are produced by reactive astrocytes, promote the transformation of diffuse β-amyloid deposits into the filamentous, neurotoxic form. A number of vicious circles, driven by the release of TNF-a and free oxygen radicals from microglial cells, may cause an upregulated microglial activation and their production of interleukin-1 which triggers, secondarily, the crucial activation of astrocytes. Reactive functional changes of glial cells seem to be controlled by an altered balance of the second messengers Ca2+ and cAMP and can be counterregulated by the endogenous cell modulator adenosine which strenghtens the cAMP-dependent signalling chain. A further reinforcement of the homeostatic adenosine effects on glial cells by pharmaca, such as propentofylline, may add to neuroprotection in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham CA, Potter H (1989) Alzheimer’s disease: recent advances in understanding the brain amyloid deposits. Biotechnology 7: 147–153

    Article  CAS  Google Scholar 

  • Araujo DM, Cotman CW (1992) β-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res 569: 141–145

    Article  PubMed  CAS  Google Scholar 

  • Banati R, Schubert P, Rothe G, Gehrmann J, Rudolphi K, Valet G, Kreutzberg GW (1994) Modulation of intracellular reactive oxygen intermediates in peritoneal macrophages and microglia/brain macrophages by propentofylline. J Cereb Blood Flow Metab 14: 145–149

    Article  PubMed  CAS  Google Scholar 

  • Bowman BH, Yang F, Buchanan JM, Adrian GS, Martinez AO (1996) Human APOE protein localized in brains of transgenic mice. Neurosci Lett 219: 57–59

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum JD, Ruefli AA, Parker CA, Cypess AM, Greengard P (1994) Calcium regulates processing of the Alzheimer amyloid protein precursor in a protein kinase C-independent manner. Proc Natl Acad Sci USA 91: 4489–4493

    Article  PubMed  CAS  Google Scholar 

  • Das S, Potter H (1995) Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by I1–1. Neuron 14: 447–456

    Article  PubMed  CAS  Google Scholar 

  • DeLeo J, Tóth L, Schubert P, Rudolphi K, Kreutzberg GW (1987) Ischemia-induced neuronal cell death, calcium accumulation and glial response in the hippocampus of the gerbil and protection by the xanthine derivative HWA 285. J Cereb Blood Flow Metab 7: 745–752

    Article  PubMed  CAS  Google Scholar 

  • Diemer NH, Seitzberg D, Rosdahl D, Nielsen M, Christensen T, Baichen T, Johansen FF (1994) AMPA receptor and metabotropic glutamate receptor mRNA expression after transient global ischemia in the rat. Pathophysiology 1: 107

    Article  Google Scholar 

  • Dyrcks T, Dyrcks E, Masters CL, Beyreuther K (1993) Amyloidogenicity of rodent and human β A4 sequences. FEBS Lett 324: 231–236

    Article  Google Scholar 

  • Ferroni S, Marchini C, Schubert P, Rapisarda C (1995) Two distinct inward rectifying conductances are expressed in cultured rat cortical astrocytes after long term dibutyryl-cyclic-AMP treatment. FEBS Lett 267: 319–325

    Article  Google Scholar 

  • Forloni G, Demicheli F, Giorgi S, Bendotti C, Angeretti N (1992) Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Mol Brain Res 16: 128–134

    Article  PubMed  CAS  Google Scholar 

  • Giulian D (1987) Amoeboid microglia as effector of inflammation in the central nervous system. J Neurosci Res 18: 155–171

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. TINS 19: 312–318

    PubMed  CAS  Google Scholar 

  • Ma J, Yee A, Brewer HB, Das S, Potter H (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of beta-protein into filaments. Nature 372: 92–94

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Kawamata T, Walker D, Abyama H, Toyama I, McGeer EG (1993) Microglia in degenerative neurological disease. Glia 7: 84–92

    Article  PubMed  CAS  Google Scholar 

  • McRae A, Rudolphi K, Schubert P (1994) Propentofylline depresses amyloid and Alzheimer’s CSF microglial antigens after ischemia. NeuroReport 5: 1193–1196

    Article  PubMed  CAS  Google Scholar 

  • McRae A, Schubert P, Ogata T, Nakamura Y, Ling EA, Kaur C, Rudolphi K (1997) Postischemic glial responses and amyloid accumulation are modified by propentofylline: a neuroprotective pharmacon for Alzheimer’s disease? In: Iqbal K, Winblad B, Nishimura T, Takeda M, Wisniewski HM (eds) Biology, diagnosis and therapeutics. Wiley, New Jersey, pp 759–767

    Google Scholar 

  • Meda L, Cassatella MA, Szendrei I (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374: 647–650

    Article  PubMed  CAS  Google Scholar 

  • Meskini N, Némoz G, Okyayuz-Baklouti I, Lagard M, Prigent AF (1994) Phosphodiesterase inhibitory profile of some related xanthine derivatives pharmacologically active on the peripheral microcirculation. Biochem Pharmacol 47: 781–788

    Article  PubMed  CAS  Google Scholar 

  • O’Neill C, Fowler CJ, Winblad B, Cowburn RF (1994) G-protein coupled signal transduction systems in the Alzheimer’s disease brain. Biochem Soc Transact 22:167–171

    Google Scholar 

  • Ogata T, Nakamura Y, Schubert P (1996) Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca2+-related A1/A2 adenosine receptor cooperation. Eur J Neurosci 8: 1124–1131

    Article  PubMed  CAS  Google Scholar 

  • Parkinson FE, Fredholm BB (1991) Effects of propentofylline on adenosine A1 and A1 receptors and nitrobenzylthioinosine-sensitive neucleoside transporters: quantitative autoradiographic analysis. Eur J Pharmacol 202: 361–366

    Article  PubMed  CAS  Google Scholar 

  • Schubert P, Rudolphi K, Fredholm F, Nakamura Y (1994) Modulation of nerve and glial cell function by adenosine — role in the development of ischemic brain damage. Int J Biochem 26: 1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Schubert P, Ogata T, Rudolphi K (1997) Depression of TNF-a release from microglial cells by adenosine and propentofylline. J Cereb Blood Flow Cell Metab 17 [Suppl 1]: S718

    Google Scholar 

  • Schubert P, Ogata T, Rudolphi K, Marchini C, McRae A, Ferroni S (1997) Support of homeostatic glial cell signalling: a novel therapeutic approach by propentofylline. In: de la Torre JC, Hachinski V (eds) Cerebrovascular pathology in Alzheimer’s disease. Ann NY Acad Sci 826: 337–347

    Article  PubMed  CAS  Google Scholar 

  • Sheng JG, Mrak RE, Griffin WS (1996) Apolipoprotein E distribution among different plaque types in Alzheimer’s disease: implications for its role in plaque progression. Neuropathol Appl Neurobiol 22: 334–341

    Article  PubMed  CAS  Google Scholar 

  • Si Q, Nakamura Y, Schubert P, Rudolphi K, Kataoka K (1996) Adenosine and propentofylline inhibit phorbol ester-induced proliferation of cultured microglia. Exp Neurol 137: 345–349

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. TINS 9: 271–277

    Google Scholar 

  • Wisniewsky T, Frangione B (1992) Apolipoprotein E: a pathological chaperone in patients with cerebral amd systemic amyloid. Neurosci Lett 135: 235–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag/Wien

About this paper

Cite this paper

Schubert, P., Ogata, T., Miyazaki, H., Marchini, C., Ferroni, S., Rudolphi, K. (1998). Pathological immuno-reactions of glial cells in Alzheimer’s disease and possible sites of interference. In: Gertz, HJ., Arendt, T. (eds) Alzheimer’s Disease — From Basic Research to Clinical Applications. Journal of Neural Transmission. Supplementa, vol 54. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7508-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7508-8_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83112-0

  • Online ISBN: 978-3-7091-7508-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics