What do we learn from a few familial Alzheimer’s disease cases?

  • C. Haass
  • R. Baumeister
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 54)


Alzheimer’s disease is the most common form of dementia. About 90% of the cases occur sporadically whereas in 10% of the cases mutations were found within three different genes. Mutations in the gene encoding the β-Amyloid precursor protein (βAPP) are located in the ultimate neighborhood of the three proteases (secretases) involved in proteolytic processing of βAPP. These mutations cause an increased production of the long form of Amyloid β-peptide (Aβ) the major component of Amyloid plaques. In contrast to the 40 amino acid form (Aβ40), the 42 amino acid form (Aβ42) aggregates more rapidly, kills cultured neurons more efficiently, and precipitates preferentially in amyloid plaques. Interestingly, mutations in the Presenilin genes which are responsible for more then 40% of all familial AD cases also cause enhanced production of the elongated form of Aβ. Therefore mutations in three different genes directly effect Aβ production in a pathological manner, which strongly supports the amyloid cascade hypothesis.


Notch Signaling Amyloid Plaque Amyloid Cascade Hypothesis Amino Acid Form Amyloid Plaque Formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artavanis-Tsakonas A, Matsuno K, Fortini ME (1995) Notch signaling. Science 268: 225–232PubMedCrossRefGoogle Scholar
  2. Baumeister R, Leimer U, Zweckbronner I, Jakubek C, Grünberg J, Haass C (1997) Human presenilin -1, but not familial Alzheimer’s disease FAD mutants, facilitate Caenorhabditis elegans Notch signaling independently of proteolytic processing. Genes & Function 1: 149–159CrossRefGoogle Scholar
  3. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada C-M, Kim G, Eekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ 1-42/1-40 ratio in vitro and in vivo. Neuron 17: 1005–1013PubMedCrossRefGoogle Scholar
  4. Busciglio J, Gabuzda DH, Matsudaira P, Yankner B (1993) Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 90: 2092–2096PubMedCrossRefGoogle Scholar
  5. Cai X, Golde TE, Younkin SG (1993) Release of excess amyloid β protein from mutant amyloid β protein precursor. Science 259: 514–516PubMedCrossRefGoogle Scholar
  6. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360: 672–674PubMedCrossRefGoogle Scholar
  7. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motte R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St. George Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Med 3: 67–72PubMedCrossRefGoogle Scholar
  8. Cook DG, Sung JC, Golde TE, Felsenstein KM, Wojczyk BS, Tanzi RE, Trojanowski JQ, Lee V M-Y, Doms RW (1996) Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc Natl Acad Sci USA 93: 9223–9228PubMedCrossRefGoogle Scholar
  9. De Strooper B, Beullens M, Contreras B, Levesque L, Craessaerts K, Cordell B, Moechars D, Bollen M, Fraser P, St. George-Hyslop P, van Leuven F (1997) Phosphorylation, subcellular localization and membrane orientation of the Alzheimer’s disease-associated presenilins. J Biol Chem 272: 3590–3598PubMedCrossRefGoogle Scholar
  10. Doan A, Thinakaran G, Borchelt DR, Slunt HH, Ratovitsky T, Podlisny M, Selkoe DJ, Seeger M, Gandy SE, Price DL, Sisodia SS (1996) Protein topology of presenilin 1. Neuron 17: 1023–1030PubMedCrossRefGoogle Scholar
  11. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-Tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid -β42 (43) in brains of mice expressing mutant presenilin 1. Nature 383: 710–713PubMedCrossRefGoogle Scholar
  12. Haass C (1997) Presenilins: genes for life an death. Neuron 18: 687–690PubMedCrossRefGoogle Scholar
  13. Haass C, Selkoe DJ (1993) Cellular processing of β -amyloid precursor protein and the genesis of amyloid β -peptide. Cell 75: 1039–1042PubMedCrossRefGoogle Scholar
  14. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325PubMedCrossRefGoogle Scholar
  15. Haass C, Lemere C, Capell A, Citron M, Seubert P, Schenk D, Lannfelt L, Selkoe DJ (1995) The Swedish mutation causes early onset Alzheimer’s disease by β-secretase cleavage within the secretory pathway. Nature Med 1: 1291–1296PubMedCrossRefGoogle Scholar
  16. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cécillion M, Maréchal E, Maciazek J, Vayssière C, Cruaud C, Cabanis E-A, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Lasserve-Tournier E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383: 707–710PubMedCrossRefGoogle Scholar
  17. Kovacs DM, Faussett HJ, Page KJ, Kim T-W, Moir R, Merriam DE, Hollister RD, Hallmark OG, Mancini R, Felsenstein KM, Hyman BT, Tanzi RE, Wasco W (1995) Alzheimer-associated presenilin 1 and 2: neuronal expression in brain and localization to intracellular membranes in mamalian cells. Nature Med 2: 224–229CrossRefGoogle Scholar
  18. Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377: 351–354PubMedCrossRefGoogle Scholar
  19. Levitan D, Doyle TG, Brousseau D, Lee MK, Thinakaran G, Slunt HH, Sisodia SS, Greenwald I (1996) Assessment of normal and mutant human pesenilin function in Caenorhabditis elegans. Proc Natl Acad Sci USA 93: 14940–14944PubMedCrossRefGoogle Scholar
  20. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingeli WH, Yu C, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu Y-H, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973–977PubMedCrossRefGoogle Scholar
  21. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holamn K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakkov I, Cohen D, Lannfelt L, Fraser PE, Rommens JM, St. George-Hyslop PH (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: 775–778PubMedCrossRefGoogle Scholar
  22. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, White JA, Bonnycastle L, Weber JL, Alonso E, Potter H, Heston LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer disease locus on chromosome 14. Science 3: 1–4Google Scholar
  23. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med 2: 864–870PubMedCrossRefGoogle Scholar
  24. Selkoe DJ (1996) Amyloid β-protein and the genetics of Alzheimer’s disease. J Biol Chem 271: 18295–18298PubMedGoogle Scholar
  25. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89: 629–639PubMedCrossRefGoogle Scholar
  26. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J-F, Brni AC, Montesi P, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, da Silva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St. George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754–760PubMedCrossRefGoogle Scholar
  27. Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai XD, McKay DM, Tintner R, Frangione B, Younkin SG (1992) Production of the Alzheimer anyloid β protein by normal proteolytic processing. Science 258: 126–129PubMedCrossRefGoogle Scholar
  28. Suzuki N, Cheung TT, Cai X-D, Odaka A, Otvos L, Eckman C, Golde TE, Younkin SG (1994) An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264: 1336–1340PubMedCrossRefGoogle Scholar
  29. Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitsky T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy SE, Jenkins NA, Copeland NG, Pric DL, Sisodia SS (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17: 181–190PubMedCrossRefGoogle Scholar
  30. Tomita T, Maryuama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S, Capell A, Walter J, Grünberg J, Haass C, Iwatsubo T, Obata K (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 94: 2025–2030PubMedCrossRefGoogle Scholar
  31. Walter J, Capell A, Grünberg J, Pesold B, Schindzielorz A, Prior R, Podlisny MB, Fraser P, St. George-Hyslop P, Selkoe DJ, Haass C (1996) The Alzheimer’s disease — associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Mol Med 2: 673–691PubMedGoogle Scholar
  32. Wild-Bode C, Yamazaki T, Capell A, Leimer U, Steiner H, Ihara Y, Haass C (1997) Intracellular generation and accumulation of amyloid β-peptide terminating at amino acid 42. J Biol Chem 272: 16085–16088PubMedCrossRefGoogle Scholar
  33. Wong PC, Zheng H, Chen H, Becher MW, Sirinathsinghji DJS, Trumbauer ME, Chen HY, Price DL, van der Ploeg LHT, Sisodia SS (1997) Presenilin 1 is required for Notch 1 and D//1 expression in the paraxial mesoderm. Nature 387: 288–292PubMedCrossRefGoogle Scholar
  34. Xia W, Zhang J, Kholodenko D, Citron M, Teplow D, Haass C, Seubert P, Koo EH, Selkoe DJ (1997) Enhanced production and oligomeraization of the 42-residue amyloid β-protein by CHO cells stably expressing mutant presenilins. J Biol Chem 272: 7977–7982PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • C. Haass
    • 1
  • R. Baumeister
    • 2
  1. 1.Department of Molecular BiologyCentral Institute for Mental HealthMannheimFederal Republic of Germany
  2. 2.Laboratory for Molecular Biology/GenzentrumUniversity of MunichMunichFederal Republic of Germany

Personalised recommendations