“Archives of Childhood” — The Research Potential of Trace Element Analyses of Ancient Human Dental Enamel

  • Gisela Grupe


Trace element analysis is an archaeometric approach to addressing a variety of questions aimed at reconstructing past human life-style and behaviour. Of these aims, two are of major interest: First, trace element uptake and the resulting elemental composition of a consumer’s tissue yields clues to ancient dietary habits, which in turn permit the reconstruction of subsistence strategies in connection with the development of anthropogenic landscapes. The second aspect concerns environmental history in the sense that body stores of heavy elements indicate environmental pollution resulting from human activities. Both have had, and still have, a major impact on human population development, and a great number of trace element analyses have been carried out by numerous research groups in different parts of the world (Grupe and Herrmann 1988; Lambert and Grupe 1993; Sandford 1992, 1993). Much work has been done with appreciable success, however an equal part possibly does not meet expectations. Therefore, the “trace element boom” of the last decade has been followed by a waning optimism in recent years.


Trace Element Concentration Trace Element Analysis Dental Enamel Trace Element Pattern Heavy Metal Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burton JH, Wright LE (1995) Nonlinearity in the relationship between bone Sr/Ca and diet: Paleodietary implications. Am J Phys Anthrop 96: 273–282.CrossRefGoogle Scholar
  2. Ehlken B (1991) Ontogenetische Trends des Strontium- und Bleieintrages in den Zahnschmelz mittelalterlicher Individuen. Dipl Arb, Göttingen.Google Scholar
  3. Ericson JE (1985) Stontium isotope characterization in the study of prehistoric human ecology. J Hum Evol 14: 503–514.CrossRefGoogle Scholar
  4. Graustein WC (1989) 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable Isotopes in Ecological Research. Springer, New York, p. 491–512.Google Scholar
  5. Grupe G (1986) Multielementanalyse: Ein neuer Weg für die Paläodemographie. Bundesinstitut für Bevölkerungsforschung (ed) Materialien zur Bevölkerungswissenschaft, Sonderheft 7, Wiesbaden.Google Scholar
  6. Grupe G (1992) Analytisch-chemische Methoden in der prähistorischen Anthropologie: Spurenelemente und stabile Isotope. In: R. Knußmann (ed) Anthropologie. Handbuch der vergleichenden Biologie des Menschen, Band I, 2. Teil. Fischer, Stuttgart, p. 66–73.Google Scholar
  7. Grupe G, Bach H (1993) Life style, subsistence and mortality in the Slavonic village at Espenfeld (Kr. Arnstadt, FRG). A trace element study. Anthrop Anz 51: 317–332.Google Scholar
  8. Grupe G, Dreses-Werringloer U (1993) Desomposition phenomena in thin sections of excavated human bone. In: Grupe G, Garland AN (eds) Paleohistology. Methods and Diagnosis. Springer, Berlin Heidelberg New York, p. 27–36.CrossRefGoogle Scholar
  9. Grupe G, Herrmann B (eds) (1988) Trace Elements in Environmental History. Springer, Berlin Heidelberg New York.Google Scholar
  10. Grupe G, Krüger HH (1990) Feeding ecology of the stone and pine marten revealed by element analysis of their skeletons. Sci Tot Envir 90: 227–240.CrossRefGoogle Scholar
  11. Grupe G, Piepenbrink H (1989) Impact of microbial activity on trace element concentrations in excavated bones. Appl Geochem 4: 293–298.CrossRefGoogle Scholar
  12. Grupe G, Price TD, Schröter P, Söllner F, Johnson CM, Beard BL (1997) Mobility of Bell Beaker people revealed by stable strontium isotope ratios of tooth and bone. A study of southern Bavarian skeletal remains. Appl Geochem 12: 517–525.CrossRefGoogle Scholar
  13. Lambert JB, Grupe G (eds) (1993) Prehistoric Human Bone - Archaeology at the Molecular Level. Springer, Berlin Heidelberg New York.Google Scholar
  14. Lambert JB, Weydert-Homeyer JM (1993) Dietary inferences from element analyses of bone. In: Lambert JB, Grupe G (eds) Prehistoric Human Bone - Archaeology at the Molecular Level. Springer, Berlin Heidelberg New York, p. 217–228.Google Scholar
  15. Lowenstam HA, Weiner S (1989) On Biomineralization. Oxford Univ Press, New York.Google Scholar
  16. Molleson T (1988) Trace elements in human teeth. In: Grupe G, Herrmann B (eds) Trace Elements in Environmental History. Springer, Berlin Heidelberg New York, p. 67–82.CrossRefGoogle Scholar
  17. Price TD, Connor M, Parsen JD (1985) Bone chemistry and the reconstruction of diet: Strontium discrimination in white-tailed deer. J Archaeol Sci 12: 419–442.CrossRefGoogle Scholar
  18. Price TD, Grupe G, Schröter P (1994) Reconstruction of migration patterns in the Bell Beaker period by stable strontium isotope analysis. Appl Geochem 9: 413–417.CrossRefGoogle Scholar
  19. Radosevich SC (1993) The six deadly sins of trace element analysis: A case of wishful thinking in science. In: Sandford MK (ed) Investigations of Ancient Human Tissues. Chemical Analyses in Anthropology. Gordon & Breach, Langhorne, p. 269–332.Google Scholar
  20. Sandford MK (1992) A reconsideration of trace element analysis in prehistoric bone. In: Saunders SR, Katzenberg MA (eds) Skeletal Biology of Past Peoples: Research Methods. Wiley-Liss, New York, p. 79–103.Google Scholar
  21. Sandford MK (ed) (1993) Investigations of Ancient Human Tissue. Chemical Analyses in Anthropology. Gordon & Breach, Langhorne.Google Scholar
  22. Schoeninger MJ (1979) Diet and status at Chalcatzingo: Some empirical and technical aspects of strontium analysis. Am J Phys Anthrop 51: 295–310.CrossRefGoogle Scholar
  23. Schroeder HE (1987) Orale Strukturbiologie. Entwicklungsgeschichte, Struktur und Funktion normaler Hart- und Weichgewebe der Mundhöhle und des Kiefergelenkes. Thieme, Stuttgart.Google Scholar
  24. Siegert G (1993) Ontogenetische Marker für den Spurenelementeintrag in das menschliche Skelett. Dipl Arb, München.Google Scholar
  25. Sillen A, LeGeros R (1991) Solubility profiles of synthetic apatites and of modern and fossil bones. J Archaeol Sci 18: 385–397.CrossRefGoogle Scholar
  26. Sillen A, Smith P (1984) Weaning patterns are reflected in strontium-calcium ratios of juvenile skeletons. J Archaeol Sci 11: 237–245.CrossRefGoogle Scholar
  27. Thornton I (1988) Soil features and human health. In: Grupe G, Herrmann B (eds) Trace Elements in Environmental History. Springer, Berlin Heidelberg New York, p. 135–144.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1998

Authors and Affiliations

  • Gisela Grupe

There are no affiliations available

Personalised recommendations