Pharmacology and neuroprotective properties of rasagiline

  • J. P. M. Finberg
  • I. Lamensdorf
  • J. W. Commissiong
  • M. B. H. Youdim
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 48)


Rasagiline [R(+)-N-propargyl-1-aminoindane] is a selective irreversible inhibitor of MAO-B which is not metabolised to amphetamine-like derivatives. Like deprenyl, when given to rats in a dose selective for inhibition of MAO-B, it does not affect striatal extracellular fluid dopamine levels, but when administered chronically (21 days) it increased striatal microdialysate dopamine without reduction in deaminated metabolites. Similarly to deprenyl, rasagiline (10-6M) increased the percentage of tyrosine hydroxylase positive cells in a primary culture of rat fetal mesencephalic cells (6 days in culture). Rasagiline, but not deprenyl, also increased the number of neurons per field in this organotypic culture.


Tyrosine Hydroxylase Monoamine Oxidase Prop Argyl Dopaminergic Cell Microdialysis Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birkmayer W, Riederer P, Youdim MBH, Linnauer W (1975) The potentiation of the antiakinetic effect after L-dopa treatment by an inhibitor of MAO-B deprenil. J Neural Transm 36: 303–326PubMedCrossRefGoogle Scholar
  2. Butcher SP, Fairbrother IS, Kelly JS, Arbuthnott GW (1990) Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J Neurochem 55: 981–988PubMedCrossRefGoogle Scholar
  3. Buu NT, Angers M (1987) Effects of different monoamine oxidase inhibitors on the metabolism of L-dopa in the rat brain. Biochem Pharmacol 36: 1731–1735CrossRefGoogle Scholar
  4. Colzi A, d’Agostini F, Kettler R, Borroni E, Da Prada M (1990) Effect of selective and reversible MAO inhibitors on dopamine outflow in rat striatum: a microdialysis study. J Neural Transm [Suppl] 32: 79–84Google Scholar
  5. Finberg JPM, Youdim MBH (1985) Modification of blood pressure and nictitating membrane response to sympathomimetic amines by selective monoamine oxidase type A and type B inhibitors. Br J Pharmacol 85: 541–546PubMedGoogle Scholar
  6. Finberg JPM, Tenne M, Youdim MBH (1981a) Tyramine antagonistic properties of AGN 1135 — an irreversible inhibitor of monoamine oxidase type B. Br J Pharmacol 73: 65–74PubMedGoogle Scholar
  7. Finberg JPM, Tenne M, Youdim MBH (1981b) Selective irreversible propargyl derivative inhibitors of monoamine oxidase (MAO) without the cheese effect. In: Youdim MBH, Paykel ES (eds) Monoamine oxidase inhibitors — the state of the art. Wiley, Chichester, pp 31–43Google Scholar
  8. Finberg JPM, Wang J, Goldstein DS, Kopin IJ, Bankiewicz KS (1995) Influence of selective inhibition of monoamine oxidase A or B on striatal metabolism of L-DOPA in hemiparkinsonian rats. J Neurochem 65: 1213–1220PubMedCrossRefGoogle Scholar
  9. Kalir A, Sabbagh A, Youdim MBH (1981) Selective acetylenic “suicide” and reversible inhibitors of monoamine oxidase type A and B. Br J Pharmacal 73: 55–64Google Scholar
  10. Kato T, Dong B, Ishii K, Kinemuchi H (1986) Brain dialysis: in vivo metabolism of dopamine and serotonin by monoamine oxidase A but not B in the striatum of unrestrained rats. J Neurochem 46: 1277–1282PubMedCrossRefGoogle Scholar
  11. Knoll J (1986) The pharmacology of (−)deprenyl. J Neural Transm [Suppl] 22: 75–89Google Scholar
  12. Knoll J (1992) (−)Deprenyl medication: a strategy to modulate the age-related decline of the striatal dopaminergic system. J Am Geriatr Soc 40: 839–847 ai]Kuroki T, Tsutsumi T, Hirano M, Matsumoto T, Tatebayashi Y, Nishiyama K, Uchimura H, Shiraishi A, Nakahara T, Nakamura K (1990) Behavioral sensitization to betaphenylethylamine (PEA): enduring modifications of specific dopaminergic neuron systems in the rat. Psychopharmacol 102: 5–10PubMedGoogle Scholar
  13. Lees A, Kohout L, Shaw JK, Stern G, Elsworth JD, Sandler M, Youdim MBH (1977) Deprenyl in Parkinson’s disease. Lancet 2: 791–795Google Scholar
  14. O’Carroll AM, Fowler CJ, Phillips JP, Tobia I, Tipton KF (1983) The deamination of dopamine by human brain monoamine oxidase: specificity for the two enzyme forms in seven brain regions. Naunyn Schmiedebergs Arch Pharmacol 322: 198–202PubMedCrossRefGoogle Scholar
  15. Otsaka S, Kobayashi Y (1964) A radioisotopic assay for monoamine oxidase determinations in human plasma. Biochem Pharmacol 13: 995–1006CrossRefGoogle Scholar
  16. Paterson lA, Juorio AV, Berry MD, Zhu MY (1991) Inhibition of monoamine oxidase-B by (−)deprenyl potentiates neuronal responses to dopamine agonists but does not inhibit dopamine catabolism in the rat striatum. J Pharmacol Exp Ther 258: 1019–1024PubMedGoogle Scholar
  17. Riederer P, Youdim MBH (1986) Brain monoamine oxidase activity and monoamine metabolism in Parkinsonian patients treated with 1-deprenyl. J Neurochem 46: 1349–1356CrossRefGoogle Scholar
  18. Riederer P, Konradi C, Schay V, Kienzel E, Youdim MBH (1986) Location of MAO A and MAO B in human brain. A step in understanding the thepeutic action of 1-deprenyl. Adv Neurol 45: 111–119Google Scholar
  19. Roy E, Bedard PJ (1993) Deprenyl increases survival of rat foetal nigral neurones in culture. Neuroreport 4: 1183–1186PubMedGoogle Scholar
  20. Salo PT, Tatton WG (1992) Deprenyl reduces the death of motoneurons caused by axotomy. J Neurosci Res 31: 394–400PubMedCrossRefGoogle Scholar
  21. Shimoda K, Sauve Y, Marini A, Schwartz JP, Commissiong JW (1992) A high yield of tyrosine hydroxylase-positive cells from rat E14 mesencephalic cell culture. Brain Res 585: 319–331CrossRefGoogle Scholar
  22. Simpson LL (1978) Evidence that deprenyl, a type B monoamine oxidase inhibitor, is an indirectly acting sympathomimetic amine. Biochem Pharmacol 27: 1591–1595PubMedCrossRefGoogle Scholar
  23. Takeshima T, Johnston JM, Commissiong JW (1994) Oligodendrocyte type 2 astrocyte (O-2A) progenitors increase the survival of rat mesencephalic dopaminergic neurons from death induced by serum dperivation. Neurosci Lett 166: 178–182PubMedCrossRefGoogle Scholar
  24. Tatton WG (1993) Selegiline can mediate neuronal rescue rather than neuronal protection. Mov Disord 8 [Suppl] 1: 20–30Google Scholar
  25. Tatton WG, Greenwood CE (1991) Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30: 666–672PubMedCrossRefGoogle Scholar
  26. Tatton WG, Ju WYL, Holland DP, Tai C, Kwan M (1994) (−)-Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63: 1572–1575PubMedCrossRefGoogle Scholar
  27. Tekes K, Tothfalusi L, Gaal J, Magyar K (1988) Effect of MAO inhibitors on the uptake and metabolism of dopamine in rat and human brain. Pol J Pharmacol 40: 653–658Google Scholar
  28. Westlund KN, Denney RM, Kochersberger LM (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230: 181–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1996

Authors and Affiliations

  • J. P. M. Finberg
    • 1
  • I. Lamensdorf
    • 1
  • J. W. Commissiong
    • 2
  • M. B. H. Youdim
    • 1
    • 3
  1. 1.Pharmacology UnitRappaport Faculty of Medicine, TechnionHaifaIsrael
  2. 2.USA
  3. 3.Rappaport Family Research InstituteHaifaIsrael

Personalised recommendations