Advertisement

Deprenyl in the treatment of Parkinson’s disease: clinical effects and speculations on mechanism of action

  • C. W. Olanow
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 48)

Summary

Selegiline is a relatively selective inhibitor of monoamine oxidase type B that has been used in Parkinson’s disease as an adjunct to levodopa and as putative neuroprotective therapy. Clinical trials demonstrate that selegiline slows the rate of disease progression and delays the appearance of disability necessitating levodopa. However, confounding symptomatic effects have made it difficult to ascertain the presence of any direct neuroprotective effect. Laboratory studies demonstrate that selegiline protects dopaminergic neurons through a mechanism that does not involve MAO-B inhibition. Recent studies suggest that neuroprotection in laboratory models may be related to the capacity of selegiline to up-regulate a series of anti-oxidant and antiapoptotic molecules which promote cell survival. Further delineation of the precise mechanism whereby selegiline induces this effect may permit for the development of enhanced neuroprotective benefits in PD patients.

Keywords

PC12 Cell Monoamine Oxidase Parkinson Study Group UPDRS Score Monoamine Oxidase Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knoll J, Esceri Z, Kelemen K, et al (1965) Phenyliopropylmethylpropinylamine (E-250), a new spectrum psychic energizer. Arch Int Pharmacodyn Ther 155: 154–164PubMedGoogle Scholar
  2. 2.
    Elsworth JD, Glover V, Reynolds GP, et al (1978) Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the “cheese effect.” Psychopharmacology 57: 33–38PubMedCrossRefGoogle Scholar
  3. 3.
    Mann JJ, Aarons SF, Wilner PJ, et al (1989) A controlled study of the antidepressant efficacy and side-effects of (−)deprenyl: a selective monoamine oxidase inhibitor. Arch Gen Psychiatry 46: 45–50PubMedCrossRefGoogle Scholar
  4. 4.
    Mendis N, Paire CMB, Sandler M, et al (1981) Is the failure of (−)deprenyl, a selective monoamine oxidase B inhibitor, to elevate depression related to freedom from the cheese effect? Psychopharmacology (Berlin) 73: 87–90PubMedCrossRefGoogle Scholar
  5. 5.
    Knoll J (1978) The possible mechanisms of action of (−)deprenyl in Parkinson’s disease. J Neural Transm 43: 177–198PubMedCrossRefGoogle Scholar
  6. 6.
    Birkmayer W, Riederer P, Youdim MBH, Linauer W (1975) The potentiation of the antiakinetic effect after I-DOPA treatment by an inhibitor of MAO-B, deprenyl. J Neural Transm 36: 303–326PubMedCrossRefGoogle Scholar
  7. 7.
    Lees AJ, Kohent LJ, Shaw KM, et al (1977) Deprenyl in Parkinson’s disease. Lancet 2: 791–795PubMedCrossRefGoogle Scholar
  8. 8.
    Eisler T, Teravainen HT, Nelson R, et al (1981) Clinical and biochemical effects of (−)deprenyl in patients with Parkinson’s disease: clinical aspects. Neurology 31: 19–23PubMedGoogle Scholar
  9. 9.
    Stern GM, Lees AJ, Hardie RJ, Sandler M (1983) Clinical and pharmacological problems of deprenyl (selegiline) treatment in Parkinson’s disease. Acta Neurol Scand 68: 113–116CrossRefGoogle Scholar
  10. 10.
    Golbe LI, Lieberman AN, Muenter MD, et al (1988) Deprenyl in the treatment of symptom fluctuations in advanced Parkinson’s disease. Clin Neuropharmol 11: 45–55CrossRefGoogle Scholar
  11. 11.
    Chiba K, Trevor A, Castagnoli N Jr (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Comm 120: 457–478CrossRefGoogle Scholar
  12. 12.
    Ransom BR, Kunis DM, Irwin I, Langston JW (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci Lett 75: 323–328PubMedCrossRefGoogle Scholar
  13. 13.
    Cohen G, Pasik P, Cohen B, et al (1985) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 106: 209–210CrossRefGoogle Scholar
  14. 14.
    Langston JW, Irwin I, Langston EB, Forno LS (1984) Pargyline prevents MPTPinduced parkinsonism in primates. Science 225: 1480–1482PubMedCrossRefGoogle Scholar
  15. 15.
    Heikkila RE, Manzino L, Duvoisin RC, Cabbat FS (1984) Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by monoamine oxidase inhibitors. Nature 311: 467–469PubMedCrossRefGoogle Scholar
  16. 16.
    Olanow CW (1990) Oxidation reactions in Parkinson’s disease. Neurology 40: 32–37PubMedGoogle Scholar
  17. 17.
    Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346PubMedCrossRefGoogle Scholar
  18. 18.
    Jenner P, Schapira AHV, Marsden CD (1992) New insights into the cause of Parkinson’s disease. Neurology 42: 2241–2250PubMedGoogle Scholar
  19. 19.
    Olanow CW (1992) Introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 32: 2–9CrossRefGoogle Scholar
  20. 20.
    Sengstock GJ, Olanow CW, Dunn AJ, et al (1992) Iron induces degeneration of substantia nigra neurons. Brain Res Bull 28: 645–649PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen G, Spina MB (1989) Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 26: 689–690PubMedCrossRefGoogle Scholar
  22. 22.
    Knoll J (1988) Extension of life span of rats by long-term (−)deprenyl treatment. Mt Sinai J Med (NY) 55: 67–74PubMedGoogle Scholar
  23. 23.
    Birkmayer W, Knoll J, Riederer P, et al (1985) Improvement of life expectancy due to 1-deprenyl addition to Madopar treatment in Parkinson’s disease: a long-term study. J Neural Transm 64: 113–127PubMedCrossRefGoogle Scholar
  24. 24.
    Tetrud JW, Langston JW (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 245: 519–522PubMedCrossRefGoogle Scholar
  25. 25.
    Parkinson Study Group (1989) DATATOP: a multicenter controlled clinical trial in early Parkinson’s disease. Arch Neurol 46: 1052–1060CrossRefGoogle Scholar
  26. 26.
    Parkinson’s Study Group (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. NEJM 321: 1364–1371CrossRefGoogle Scholar
  27. 27.
    Parkinson’s Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. NEJM 328: 176–183CrossRefGoogle Scholar
  28. 28.
    Yahr MD, Elizan TS, Moros D (1989) Selegiline in the treatment of Parkinson’s disease—long term experience. Acta Neurol Scand 128: 157–161Google Scholar
  29. 29.
    Olanow CW, Calne D (1991) Does selegiline monotherapy in Parkinson’s disease act by symptomatic or protective mechanisms? Neurology 42: 13–26Google Scholar
  30. 30.
    Olanow CW, Hauser RA, Gauger L, et al (1995) A longtitudinal, double-blind, controlled study of the effect of deprenyl and levodopa on the progression of signs and symptoms of Parkinson’s disease. Ann Neurol 38: 771–777PubMedCrossRefGoogle Scholar
  31. 31.
    Arnett CD, Fowler JS, MacGregor RR, et al (1987) Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using L(IIC) deprenyl. J Neurochem 49: 522–527PubMedCrossRefGoogle Scholar
  32. 32.
    Hauser RA, Olanow CW, Koller WC (1994) Time course of wash-out of symptomatic medication in Parkinson’s disease. Neurology 44: 259Google Scholar
  33. 33.
    Schulzer M, Mark E, Calne DB (1992) The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic. Ann Neurol 32: 795–798PubMedCrossRefGoogle Scholar
  34. 34.
    Brannan T, Yahr MD (1995) Comparative study of selegiline plus L-dopa-carbidopa versus L-dopa-carbidopa alone in the treatment of Parkinson’s disease. Ann Neurol 37: 95–98PubMedCrossRefGoogle Scholar
  35. 35.
    Parkinson Disease Research Group in the United Kingdom (1993) Comparisons of therapeutic effects of levodopa, levodopa and selegiline, and bromocriptine in patients with early, mild Parkinson’s disease: three year interim report. BMJ 307: 469–472CrossRefGoogle Scholar
  36. 36.
    Elizan TS, Yahr MD, Moros DA, et al (1989) Selegiline use to prevent progression of Parkinson’s disease. Experience in 22 de novo patients. Arch Neurol 46: 1275–1279PubMedCrossRefGoogle Scholar
  37. 37.
    Elizan TS, Yahr MD, Moros DA, et al (1989) Selegiline as an adjunct to conventional levodopa therapy in Parkinson’s disease. Experience with this type B monoamine oxidase inhibitor in 200 patients. Arch Neruol 46: 1280–1283CrossRefGoogle Scholar
  38. 38.
    Parkinson study group (1993) A controlled clinical trial of lazabemide (ROI9-6327) in untreated Parkinson’s disease. Ann Neurol 33: 350–356CrossRefGoogle Scholar
  39. 39.
    Parkinson Study Group (1994) A controlled trial of Lazabemide (R019-6327) in levodopa-treated Parkinson’s disease. Arch Neurol 51: 342–347CrossRefGoogle Scholar
  40. 40.
    Kindt MV, Youngster SK, Sonsalla PK, et al (1988) Role for the monoamine oxidase A (MAO-A) in the bioactivation and nigral striatal dopaminergic neurotoxicity of the MPTP analog 2’ME-MPTP. Eur J Pharmacol 146: 313–318PubMedCrossRefGoogle Scholar
  41. 41.
    Glover V, Sandler M, Owen F, Riley G (1977) Dopamine is a monoamine oxidase B substrate in man. Nature 265: 80–81PubMedCrossRefGoogle Scholar
  42. 42.
    Westlund KN, Denney RM, Kochersperger LM, et al (1985) Distinct monoamine oxidase A and B populations in the primate brain. Science 230: 181–183PubMedCrossRefGoogle Scholar
  43. 43.
    Parkinson’s Study Group (1995) Cerebrospinal fluid homovanillic acid in the DATATOP study on Parkinson’s disease. Arch Neurol 52: 237–245CrossRefGoogle Scholar
  44. 44.
    Pardo B, Mena MA, Fahn S, DeYebenes JG (1993) Ascorbic acid protects against levodopa-induced neurotoxicity on a catecholamine-rich human neuroblastoma cell line. Mov Disord 8: 278–284PubMedCrossRefGoogle Scholar
  45. 45.
    Tatton WG, Greenwood CE (1991) Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30: 666–677PubMedCrossRefGoogle Scholar
  46. 46.
    Tatton WG, Ju WYH, Wadia J, Tatton NA (1996) Reduction of neuronal apoptosis by small molecules: promise for new approaches to neurological therapy. In: Olanow CW, Jenner P, Youim MHB (eds) Neurodegeneration and prospects for neuroprotection in Parkinson’s disease. Academic Press, London, pp 202–220Google Scholar
  47. 47.
    Finnegan KT, Skratt JJ, Irwin I, et al (1990) Protection against DSP-4 induced neurotoxicity by deprenyl is not related to its inhibition of MAO-B. Eur J Pharmacol 184Google Scholar
  48. 48.
    Wu RM, Chieuh CC, Pert A, Murphy DL (1993) Apparent antioxidant effect of l-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur J Pharmacol 243: 241–247PubMedCrossRefGoogle Scholar
  49. 49.
    Mytilineou C, Cohen G (1985) Deprenyl protects dopamine neurons from the neurotoxic effect of l-methyl-4-phenyl-pyridinium ion. J Neurochem 45: 1951–1953PubMedCrossRefGoogle Scholar
  50. 50.
    Kane DJ, Sarafian TA, Anton R, Hahn H, Gralia EB, Valentine JS, Ord T, Bresdesen DE (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274–1276PubMedCrossRefGoogle Scholar
  51. 51.
    Mah SP, Zhong LT, Liu Y, Roghani A, Edwards RH, Bredesen DE (1993) The protooncogene bcl-2 inhibits apoptosis in PC12 cells. J Neurochem 60: 1183–1186PubMedCrossRefGoogle Scholar
  52. 52.
    Walkinshaw G, Waters CM (1994) Neurotoxin induced cell death in neuronal PC12 cells is mediated by induction of apoptosis. Neuroscience 63: 975–987PubMedCrossRefGoogle Scholar
  53. 53.
    Walkinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA; implications for the treatment of Parkinson’s disease. J Clin Inv 2458–2464Google Scholar
  54. 54.
    Ziv I, Melamed E, Nardi N, Luria D, Achiron A, Offen D, Barzilai A (1994) Dopamine induces apoptosis-like cell death in cultured chick sympathetic. Neurosci Lett 170: 136–140PubMedCrossRefGoogle Scholar
  55. 55.
    Mytilineou C, Han S-K, Cohen G (1993) Toxic and protective effects of I-DOPA on mesencephalic cell cultures. J Neurochem 61: 1470–1478PubMedCrossRefGoogle Scholar
  56. 56.
    Han S-K, Mytilineou C, Cohen G (1996) L-DOPA upregulates glutathione (GSH) and protects mesencephalic cultures against oxidative stress. J Neurochem 66: 501–510PubMedCrossRefGoogle Scholar
  57. 57.
    Hyman C, Hofer M, Barde YA, et al (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350: 230–233PubMedCrossRefGoogle Scholar
  58. 58.
    Spina MB, Squinto Sp, Miller J, et al (1991) BDNF protects dopamine neurons against 6-OHDA and MPP+: involvement of the glutathione system. J Neurochem 59: 99–106CrossRefGoogle Scholar
  59. 59.
    Tatton WG, Ju WYL, Holland DP, et al (1994) (−)-Deprenyl reduces PC12 cell apoptosis by inducing new protein sythesis. J Neurochem 63: 1572–1575PubMedCrossRefGoogle Scholar
  60. 60.
    Mytilineou C, Radcliffe P, Leonardi EK, et al (1996) L-Deprenyl protects mesencephalic dopamine neurons from glutamate-receptor-mediated toxicity. J Neurochem (in press)Google Scholar

Copyright information

© Springer-Verlag/Wien 1996

Authors and Affiliations

  • C. W. Olanow
    • 1
  1. 1.Mount Sinai School of MedicineNew YorkUSA

Personalised recommendations