Skip to main content

Are metabolites of l-deprenyl (selegiline) useful or harmful? Indications from preclinical research

  • Conference paper
Deprenyl — Past and Future

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 48))

Summary

A frequent topic of controversy has been whether metabolism of l-deprenyl (selegiline) to active metabolites is a detriment to clinical use. This paper reviews possible roles of the metabolites of l-deprenyl in producing unwanted adverse side effects or in augmenting or mediating its clinically useful actions. Levels of l-amphctamine and l-methamphetamine likely to be reached, even with excessive intake of l-deprenyl, would be unlikely to produce neurotoxicity and there is no preclinical or clinical evidence of abuse liability of l-deprenyl. In contrast, there is evidence that l-amphetamine and l-methamphetamine have some qualitatively different actions than their disomer counterparts on EEG and cognitive functioning which might result in beneficial clinical effects and complement beneficial clinical actions of l-deprenyl itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartus RT (1990) Drugs to treat age-related neurodegenerative problems. J Aging Geriatr Sci 38: 680–695

    CAS  Google Scholar 

  • Berry MD, Juorio AV, Paterson IA (1994) Possible mechanisms of action of (−)deprenyl and other MAO-B inhibitors in some neurologic and psychiatric disorders. Prog Neurobiol 44: 141–161

    Article  PubMed  CAS  Google Scholar 

  • Buu NT, Angers M (1987) Effects of different monoamine oxidase inhibitors on the metabolism of L-DOPA in the rat brain. Biochem Pharmacol 36: 1731–1735

    Article  Google Scholar 

  • Chiarello RJ, Cole JO (1987) The use of psychostimulants in general psychiatry. Arch Gen Psychiatry 44: 286–295

    Article  PubMed  CAS  Google Scholar 

  • Cody JT, Schwarzhoff R (1993) Interpretation of methamphetamine and amphetamine enantiomer data. J Anal Toxicol 17: 321–326

    PubMed  CAS  Google Scholar 

  • Colpaert FC, Niemegeers CJE, Janssen PAJ (1980) Evidence that a preferred substrate for type B monoamine oxidase mediates stimulus properties of MAO inhibitors: a possible role for β-phenylethylamine in the cocaine clue. Pharmacol Biochem Behav 13: 513–517

    Article  PubMed  CAS  Google Scholar 

  • Corsi-Cabrera R, Ramos J, Guevara MA, Arce C, Gutierrez S (1993) Gender differences in the EEG during cognitive activity. Int J Neurosci 72: 257–264

    Article  PubMed  CAS  Google Scholar 

  • Engberg G, Elebring T, Nissbrandt H (1991) Deprenyl (selegiline), a selective MAO-B inhibitor with active metabolites; effects on locomotor activity, dopaminergic neurotransmission and firing rate of nigral dopamine neurons. J Pharmacol Exp Ther 259: 841–847

    PubMed  CAS  Google Scholar 

  • Fang J, YU PH (1994) Effect of L-deprenyl, its structural analogues and some monoamine oxidase inhibitors on dopamine uptake. Neuropharmacology 33: 763–768

    Article  PubMed  CAS  Google Scholar 

  • Fozard JR, Zreika M, Robin M, Palfreyman MG (1985) The functional consequences of inhibition of monoamine oxidase type B: comparison of the pharmacological properties of L-deprenyl and MDL 72145. Naunyn Schmiedebergs Arch Pharmacol 334: 186–193

    Article  Google Scholar 

  • Gelowitz DL, Richardson JS, Wishart TB, Yu PH, Lai C-T (1993) Chronic L-deprenyl or l-amphetamine: equal cognitive enhancement, unequal MAO inhibition. Pharmacol Biochem Behav 47: 41–45

    Article  Google Scholar 

  • Goldberg SR, Stolerman IP (eds) (1986) Behavioral analysis of drug dependence. Academic Press, London

    Google Scholar 

  • Goldberg SR, Yasar S, Bergman J (1994) Introduction: examination of clinical and preclinical pharmacologic data relating to abuse liability of l-deprenyl (selegiline). Clin Pharmacol Ther 56: 721–724

    Article  PubMed  CAS  Google Scholar 

  • Halliday R, Callaway E, Naylar H, Gratzinger P, Prael R (1986) The effects of stimulant drugs on information processing in elderly adults. J Gerontol 41: 748–757

    PubMed  CAS  Google Scholar 

  • Heikkila RE, Orlansky H, Mytilineou C, Cohen G (1975) Amphetamine: evaluation of d-and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3Hnorepinephrine in slices of rat neostriatum and cerebral cortex. J Pharmacol Exp Ther 194: 47–56

    PubMed  CAS  Google Scholar 

  • Katz JL (1982) Rate-dependent effects of d-and l-amphetamine on schedule-controlled responding in pigeons and squirrel monkeys. Neuropharmacology 21: 235–242

    Article  PubMed  CAS  Google Scholar 

  • Knoll J, Ecseri Z, Kelemen K, Nievel J, Knoll B (1965) Phenylisopropylmethylpropinylamine (E-250), a new psychic energizer. Arch Int Pharmacodyn 155: 154–164

    PubMed  CAS  Google Scholar 

  • Koelega HS (1993) Stimulant drugs and vigilance performance: a review. Psychopharmacology 111: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15: 1308–1317

    PubMed  CAS  Google Scholar 

  • Lamb RJ, Griffiths RR (1990) Self-administration in baboons and the discriminative stimulus effects in rats of bupropion, nomifensine, diclofensine and imipramine. Psychopharmacology 102: 183–190

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Kessler M, Arai A, Larson J (1990) The nature and causes of hippocampal long-term potentiation. In: Storm-Mathisen J, Zimmer J, Ottersen OP (eds) Progress in brain research, vol 83. Elsevier Science, New York, pp 233–248

    Google Scholar 

  • Marelt GJ, Vosmer G, Seiden LS (1990) Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons. Brain Res 513: 274–279

    Article  Google Scholar 

  • Masand P, Murray GB, Pickett P (1991) Psychostimulants in post-stroke depression. J Neuropsychiatr Clin Neurosci 3: 23–27

    CAS  Google Scholar 

  • Milgram NW, Ivy GO, Head E, Murphy MP, Wu PH, Ruehl WW, Yu PH, Durden DA, Davis BA, Paterson IA, Boulton AA (1993) The effect of L-deprenyl on behavior, cognitive function and biogenic amines in the dog. Neurochem Res 18: 1211–1219

    Article  PubMed  CAS  Google Scholar 

  • Miller R (1991) Cortico-hippocampal interplay and the representation of contexts in the brain. Springer, Berlin Heidelberg New York Tokyo (Studies of Brain Function, vol 7)

    Google Scholar 

  • Moser PC (1990) Generalization of L-deprenyl, but not MDL-72974, to the D-amphetamine stimulus in rats. Psychopharmacology 101: S40

    Google Scholar 

  • Nickel B, Schultze G, Szelenyi I (1990) Effect of enantiomers of deprenyl (selegeline) and amphetamine on physical abuse liability and cortical electrical activity in rats. Neuropharmacology 29: 983–992

    Article  PubMed  CAS  Google Scholar 

  • Philips SR (1981) Amphetamine, p-hydroxyamphetamine and β-phenylethylamine in mouse brain and urine after (−)-and (+)-deprenyl administration. Pharm Pharmacol 33: 739–741

    CAS  Google Scholar 

  • Porsolt RD, Pawelec C, Jalfre M (1984) Discrimination of amphetamine cue: effects of A, B and mixed type inhibitors of monoamine oxidase. Neuropharmacology 23: 569–573

    Article  PubMed  CAS  Google Scholar 

  • Ramos E, Corsi-Cabrera M, Guevara MA, Arce C (1993) EEG activity during cognitive performance in women. Int J Neurosci 69: 189–195

    Article  Google Scholar 

  • Reynolds GP, Elsworth JD, Blau K, Sandler M, Lees AJ, Stern GM (1978) Deprenyl is metabolized to methamphetamine and amphetamine in man. Br J Clin Pharmacol 6: 542–544

    PubMed  CAS  Google Scholar 

  • Risner ME, Jones BE (1977) Characteristics of β-phenylethylamine self-administration by dog. Pharmacol Biochem Behav 6: 689–696

    Article  PubMed  CAS  Google Scholar 

  • Schechter MD (1978) Stimulus properties of d-amphetamine as compared to l-amphetamine. Eur J Pharmacol 47: 461–464

    Article  PubMed  CAS  Google Scholar 

  • Shannon HE, De Georgio CM (1982) Self-administration of endogenous trace amines β-phenylethylamine, N-methyl phenylethylamine and phenylethanolamine in dogs. J Pharmacol Exp Ther 222: 52–60

    PubMed  CAS  Google Scholar 

  • Sprague JE, Nichols DE (1995) The monoamine oxidase-B inhibitor L-deprenyl protects against 3,4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficits. J Pharmacol Exp Ther 273: 667–673

    PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger HC (1981) Intravenous self-administration of nomifensine in rat: implications for abuse potential in humans. Science 212: 11671–1168

    Article  Google Scholar 

  • Tatton WG (1993) “Trophic-like” reduction of nerve cell death by deprenyl without monoamine oxidase inhibition. Neurology Forum 4: 3–10

    Google Scholar 

  • Taylor KM, Snyder SH (1970) Amphetamine: differentation by d and l isomers of behavior involving brain norepinephrine or dopamine. Science 168: 1487–1489

    Article  PubMed  CAS  Google Scholar 

  • Terrace HS (1966) Stimulus control. In: Honig WK (ed) Operant behavior: areas of research and application. Prentice-Hall, Englewoods Cliffs NJ, pp 271–344

    Google Scholar 

  • Timár J, Knoll B (1986) The effect of repeated administration of (−)-deprenyl on the phenylethylamine-induced stereotypy in rats. Arch Int Pharmacodyn 279: 50–60

    PubMed  Google Scholar 

  • Warneke L (1990) Psychostimulants in psychiatry. Can J Psychiatry 35: 3–10

    PubMed  CAS  Google Scholar 

  • Woods SW, Tesar GE, Murray GB, Cassem NH (1986) Psychostimulant treatment of depressive disorders secondary to medical illness. J Clin Psychiatry 47: 12–15

    PubMed  CAS  Google Scholar 

  • Winger GD, Palmer RK, Woods JH (1989) Drug-reinforced responding: rapid determination of dose-response functions. Drug Alcohol Depend 24: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Winger GD, Yasar S, Negus SS, Goldberg SR (1994) Intravenous self-administration studies with l-deprcnyl (selegiline) in monkeys. Clin Pharmacol Ther 56: 774–780

    Article  PubMed  CAS  Google Scholar 

  • Wragg RE, Jeste DV (1989) Overview of depression and psychosis in Alzheimer’s disease. Am J Psychiatry 146: 577–587

    PubMed  CAS  Google Scholar 

  • Yasar S, Bergman J (1994) Amphetamine-like effect of l-deprenyl (selegiline) in drug discrimination studies. Clin Pharmacol Ther 56: 768–773

    Article  PubMed  CAS  Google Scholar 

  • Yasar S, Schindler CW, Thorndike EB, Szelenyi I, Goldberg SR (1993a) Evaluation of the stereoisomers of deprenyl for amphetamine-like discriminative stimulus effects in rats. J Pharmacol Exp Ther 265: 1–6

    PubMed  CAS  Google Scholar 

  • Yasar S, Winger G, Nickel B, Schulze G, Goldberg SR (1993b) Preclinical evalation of l-deprenyl: lack of amphetamine-like abuse potential. In: Szelenyi I (ed) Inhibitors of monoamine oxidase B. Birkhäuser, Basel, pp 215–233

    Google Scholar 

  • Yasar S, Schindler CW, Thorndike EB, Goldberg SR (1994) Evaluation of deprenyl for cocaine-like discriminative stimlus effects in rats. Eur J Pharmacol 259: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Yokel RA, Pickens R (1973) Self-administration of optical isomers of amphetamine and methylamphetamine by rats. J Pharmacol Exp Ther 187: 27–33

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this paper

Cite this paper

Yasar, S., Goldberg, J.P., Goldberg, S.R. (1996). Are metabolites of l-deprenyl (selegiline) useful or harmful? Indications from preclinical research. In: Kuhn, W., Kraus, P., Przuntek, H. (eds) Deprenyl — Past and Future. Journal of Neural Transmission, vol 48. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7494-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7494-4_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82891-5

  • Online ISBN: 978-3-7091-7494-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics