Advertisement

Flow Visualization for Multiblock Multigrid Simulations

  • Roberto Grosso
  • Martin Schulz
  • Jan Kraheberger
  • Thomas Ertl
Part of the Eurographics book series (EUROGRAPH)

Abstract

Multiblock multigrid finite volume methods based on hexahedral control volumes are computationally efficient and widely used for solving the Navier-Stokes equations. Due to the enormous amount of data generated during an instationary 3D simulation visualization plays an important role for problem analysis and development. Two different approaches for the interactive steering of multigrid computations in combination with the IRIS Explorer visualization package are investigated. The strategies for the visualization of complex multiblock grids which are presented are based on a new visualization data type, on a concept for the reusability of available visualization modules for curvilinear grids, and on a special algorithm for particle tracing, which does not depend on the connectivity information between blocks.

Keywords

Multigrid Method Neighboring Block Local Refinement Block Transition Curvilinear Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Becker, D. A. Lane, and N. L. Max. Unsteady Flow Volumes. In G.M. Nielson and Silver D., editors, Visualization ’95, pages 329–335, Los Alamitos, CA, 1995. IEEE, IEEE Computer Society Press.Google Scholar
  2. 2.
    F. Durst, H.J. Leister, M. Schäfer, and E. Schreck. Efficient 3-D Flow Prediction on Parallel High-Performance Computers. In Computational Fluid Dynamics on Parallel Systems, volume 50 of Notes on Numerical Fluid Mechanics, pages 59–65. Vieweg Verlag, 1995.Google Scholar
  3. 3.
    R. P. Fedorenko. A Relaxation Method for Solving Elliptic Difference Equations. USSR Comput. Math. math. Phys., 1(5):1092–1096, 1961.MathSciNetMATHGoogle Scholar
  4. 4.
    T. Frühauf. Interactive Visualization of Vector Data in Unstructured Volumes. Comput. & Graphics, 18(l):73–80, 1994.CrossRefGoogle Scholar
  5. 5.
    W. Hackbusch. Multigrid Methods and Applications. Springer Verlag, Berlin — Heidelberg — New York, 1985.Google Scholar
  6. 6.
    D.N. Kenwright and D. A. Lane. Optimization of Time-Dependent Particle Tracing Using Tetrahedral decomposition. In G.M. Nielson and Silver D., editors, Visualization ’95, pages 321–328, Los Alamitos, CA, 1995. IEEE, IEEE Computer Society Press.Google Scholar
  7. 7.
    A. Sadarjoen, T. van Walsum, A. J. S. Hin, and F.H. Post. Particle Tracing Algorithms for 3D Curvilinear Grids. In Fifth Eurographics Workshop on Visualization in Scientific Computing, 1994.Google Scholar
  8. 8.
    M. Schafer, E. Schreck, and K. Wechsler. An Efficient Parallel Solution Technique for the Incompressible Navier-Stokes Equations. In F.-K. Hebeker, R. Rannacher, and G. Wittum, editors, Numerical Methods for the Navier-Stokes Equations, volume 47 of Notes on Numerical Fluid Mechanics, pages 228–238. Vieweg Verlag, 1994.Google Scholar

Copyright information

© Springer-Verlag/Wien 1996

Authors and Affiliations

  • Roberto Grosso
    • 1
  • Martin Schulz
    • 1
  • Jan Kraheberger
    • 1
  • Thomas Ertl
    • 1
  1. 1.Lehrstuhl für Graphische Datenverarbeitung (IMMD 9)Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations