Skip to main content

Regulation of C/N Interactions in Higher Plants by Protein Phosphorylation

  • Chapter
Signal Transduction in Plant Growth and Development

Part of the book series: Plant Gene Research ((GENE))

Abstract

In the light, leaves are the primary site of photosynthetic CO2 fixation for synthesis of carbohydrates and also for the reduction of nitrate to ammonium for biosynthesis of amino acids. In many species, sucrose is the major soluble carbohydrate synthesized and also serves as the primary transport form of reduced carbon. Many of the amino acids, synthesized in mesophyll cells are also exported from the leaf, along with sucrose, via the phloem (Riens et al., 1991). Based on measurements of the concentrations of metabolites in the phloem sap versus the mesophyll cytoplasm, Riens et al. (1991) concluded that amino-acid uptake into the phloem is passive in nature and therefore translocation occurs in response to active sucrose uptake and movement from the leaf. Both carbohydrates and amino acids are also stored in the leaf during the photoperiod such that export of reduced-C and -N can continue throughout the night period. In spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.), the rate of export from leaves at night was found to be about 40% of the rate during the light period (Riens et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aslam M, Huffaker RC, Rains DW, Rao KP (1979) Influence of ambient carbon dioxide concentration on nitrate assimilation by intact barley seedlings. Plant Physiol 63: 1205–1209.

    Article  PubMed  CAS  Google Scholar 

  • Bachmann M, McMichael RW Jr, Huber SC (1994) Nitrate reductase protein kinase in spinach leaves. Plant Physiol 104 [Suppl]: 91

    Google Scholar 

  • Bakrim N, Echeverría C, Cretin C, Arrio-Dupont M, Pierre JN, Vidal J, Chollet R, Gadal P (1992) Regulatory phosphorylation of Sorghum leaf phosphorenolpyravate carboxylase. Identification of the protein-serine kinase and some elements of the signal-transduction cascade. Eur J Biochem 204: 821–830

    Article  PubMed  CAS  Google Scholar 

  • Bakrim N, Prioul J-L, Deleens E, Rocher J-P, Arrio-Dupont M, Vidal J, Gadal P, Chollet R (1993) Regulatory phosphorylation of C4 phosphoenolpyravate carboxylase: a cardinal event influencing the photosynthesis rate in C4 plants. Plant Physiol 101: 891–897

    PubMed  CAS  Google Scholar 

  • Battistelli A, Adcock MD, Leegood RD (1991) The relationship between the activation state of sucrose phosphate synthase and the rate of CO2 assimilation in spinach leaves. Planta 183: 620–622

    Article  CAS  Google Scholar 

  • Beevers L, Hageman RH (1980) Nitrate and nitrite reduction. In: Miflin BJ (ed) The biochemistry of plants, vol 5. Academic Press, New York, pp 115–168

    Google Scholar 

  • Bialojan C, Takai A (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Biochem J 256: 283–290

    PubMed  CAS  Google Scholar 

  • Budde RJA, Randall, DD (1990a) Light as a signal influencing the phosphorylation status of plant proteins. Plant Physiol 94: 1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Budde RJA, Randall DD (1990b) Pea leaf mitochondrial pyruvate dehydrogenase complex is inactivated in vivo in a light-dependent manner. Proc Natl Acad Sci USA 87: 673–676

    Article  PubMed  CAS  Google Scholar 

  • Carter PJ, Nimmo HG, Fewson CA, Wilkins MB (1991) Circadian rhythms in the activity of a plant protein kinase. EMBO J 10: 2063–2068

    PubMed  CAS  Google Scholar 

  • Champigny M-L, Foyer C (1992) Nitrate activation of cytosolic protein kinases diverts photo-synthetic carbon from sucrose to amino acid biosynthesis. Plant Physiol 100: 7–12

    Article  PubMed  CAS  Google Scholar 

  • Chen RD, Gadal P (1990) Do mitochondria provide the 2-oxoglutarate needed for glutamate synthesis in higher plant chloroplasts? Plant Physiol Biochem 28: 141–145

    CAS  Google Scholar 

  • Cheng CL, Acedo GN, Cristinsin M, Conkling MA (1992) Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci USA 89: 1861–1864

    Article  PubMed  CAS  Google Scholar 

  • De Cires A, de la Torre A, Delgado B, Lara C (1993) Role of light and CO2 fixation in the control of nitrate-reductase activity in barley leaves. Planta 190: 277–283

    Article  Google Scholar 

  • De la Torre A, Delgado B, Lara C (1991) Nitrate-dependent O2 evolution in intact leaves. Plant Physiol 96: 898–901

    Article  PubMed  Google Scholar 

  • Duff SMG, Chollet R (1994) Regulation of wheat-leaf phosphorenolpyruvate carboxylase by reversible phosphorylation. Plant Physiol 105 [Suppl]: 40

    Google Scholar 

  • Dunford R, Plaxton WC, Turpin DH (1994) Kinetic properties of phosphorenolpyruvate carboxylase are altered on ammonium resupply to N-limited cells of the green algae Selenestrum minutum. Plant Physiol 105 [Suppl]: 60

    Google Scholar 

  • Ebbighausen H, Chen J, Heidt HW (1985) Oxaloacetate translocator in plant mitochondria. Biochim Biophys Acta 810: 184–199

    Article  CAS  Google Scholar 

  • Emes MJ, Bowsher CG (1991) Integration and compartmentation of carbon and nitrogen metabolism in roots. In: Emes MJ (ed) Compartmentation of plant metabolism in non-photosynthetic tissues. Cambridge University Press, Cambridge, pp 147–165

    Google Scholar 

  • Flügge U-I, Heidt HW (1991) Metabolite translocators of the chloroplast envelope. Annu Rev Plant Physiol Plant Mol Biol 42: 129–144

    Article  Google Scholar 

  • Foyer C, Noctor G, Lelandais M, Lescure JC, Valadier MH, Boutin JP, Horton P (1994) Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. Planta 192: 211–220

    Article  CAS  Google Scholar 

  • Gemel J, Randall DD (1992) Light regulation of leaf mitochondrial pyruvate dehydrogenase complex. Role of photorespiratory carbon metabolism. Plant Physiol 100: 908–914

    Article  PubMed  CAS  Google Scholar 

  • Glaab J, Kaiser WM (1993) Rapid modulation of nitrate reductase in pea roots. Planta 191: 173–179

    Article  CAS  Google Scholar 

  • Glaab J, Kaiser WM (1995) Inactivation of nitrate reductase is a two step mechanism, involving NR-protein phosphorylation and subsequent ‘binding’ of an inhibitor protein. Planta 195: 514–518

    Article  CAS  Google Scholar 

  • Hanning I, Heidt HW (1993) On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves. Partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products. Plant Physiol 103: 1147–1154

    PubMed  CAS  Google Scholar 

  • Hardie DG (1993) Use of protein phosphatase inhibitors in intact cells. In: Hardie DG (ed) Protein phosphorylation, practical approach. Oxford University Press, New York, pp 109–120

    Google Scholar 

  • Hoff T, Stummann BM, Henningsen KW (1992) Structure, function and regulation of nitrate reductase in higher plants. Physiol Plant 84: 616–624

    Article  CAS  Google Scholar 

  • Hoff T, Trung H-N, Caboche M (1994) The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ 17: 489–506

    Article  CAS  Google Scholar 

  • Huber JL, Huber SC (1992) Site-specific serine phosphorylation of spinach leaf sucrose-phosphate synthase. Biochem J 283: 877–882.

    PubMed  CAS  Google Scholar 

  • Huber JL, Huber SC, Nielsen TH (1989) Protein phosphorylation as a mechanism for regulation of spinach leaf sucrose-phosphate synthase activity. Arch Biochem Biophys 270: 681–690

    Article  PubMed  CAS  Google Scholar 

  • Huber JL, Huber, SC, Campbell WH, Redinbaugh MG (1992) Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch Biochem Biophys 296: 58–65

    Article  PubMed  CAS  Google Scholar 

  • Huber, JL, Huber SC, McMichael RW Jr, Redinbaugh MG, Campbell WH (1993) Modulation of nitrate reductase by protein phosphorylation. Curr Top Plant Biochem Physiol 12: 7–8

    Google Scholar 

  • Huber JL, Redinbaugh MG, Huber SC, Campbell WH (1994) Regulation of maize leaf nitrate reductase activity involves both gene expression and protein phosphorylation. Plant Physiol 106: 1667–1674

    PubMed  CAS  Google Scholar 

  • Huber, SC, Huber JL (1990a) Regulation of maize leaf sucrose-phosphate synthase by protein phosphorylation. Plant Cell Physiol 32: 319–326

    Google Scholar 

  • Huber SC, Huber HL (1990b) In vitro phosphorylation and inactivation of spinach leaf sucrose-phosphate synthase by an endogenous protein kinase. Biochim Biophys Acta 1091: 393–400

    Article  Google Scholar 

  • Huber SC, Huber JL, (1990c) Regulation of spinach leaf sucrose-phosphate synthase by multi-site phosphorylation. Curr Top Plant Biochem Physiol 9: 329–343

    CAS  Google Scholar 

  • Huber SC, Huber JL, McMichael RW Jr, Campbell WH Redinbaugh MG (1992) Regulation of cytoplasmic C- and N-metabolism by protein phosphorylation. In: Murata N (ed) Research in photosynthesis, vol III. Kluwer, Dordrecht, pp 675–682

    Chapter  Google Scholar 

  • Huber SC, Huber JL McMichael RW Jr, Campbell WH, Redinbaugh MG (1993) Sucrosephosphate synthase: regulation by protein phosphorylation and possible role in C/N interactions. Curr Top Plant Biochem Physiol 12: 9–10

    Google Scholar 

  • Huber SC, Huber JL, Kaiser WM (1994a) Differential response of nitrate reductase and sucrosephosphate synthase-activation to inorganic and organic salts, in vitro and in situ. Physiol Plant 92: 302–310

    Article  CAS  Google Scholar 

  • Huber SC, Huber JL, McMichael RW Jr (1994b) Control of plant enzyme activity by reversible protein phosphorylation. Int Rev Cytol 149: 47–98

    Article  CAS  Google Scholar 

  • Huber SC, McMichael RW Jr, Huber JL, Bachmann M, Yamamoto YT, Conkling MA (1995) Light regulation of sucrose synthesis: role of protein phosphorylation and possible involvement of cytosolic [Ca2+]. In: Madore MA, Lucas WJ (eds) Carbon partitioning and source-sink interactions. American Society of Plant Physiologists, Rockville, MD, pp 35–44

    Google Scholar 

  • Huppe HC, Turpin DH (1994). Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45: 577–607

    Article  CAS  Google Scholar 

  • Jiao J-A, Chollet R (1991) Posttranslational regulation of phosphorenolpyravate carboxylase in C4 and crassulacean acid metabolism plants. Plant Physiol 95: 981–985

    Article  PubMed  CAS  Google Scholar 

  • Jiao J-A, Chollet R (1992) Light activation of maize phosphorenolpyravate carboxylase protein-serine kinase activity is inhibited by mesophyll and bundle sheath-directed photosynthesis inhibitors. Plant Physiol 98: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Jiao J-A, Echeverria C, Vidal J, Chollet R (1991) Protein turnover as a component in the light/dark regulation of phosphorenolpyravate carboxylase protein-serine kinase activity in C4 plants. Proc Natl Acad Sci USA 88: 2712–2715

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Brendle-Behnisch E (1991) Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis. I. Modulation in vivo by CO2 availability. Plant Physiol 96: 363–367

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Förster J (1989) Low CO2 prevents nitrate reduction in leaves. Plant Physiol 91: 970–974

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Huber SC (1994) Modulation of nitrate reductase in vivo and in vitro: effects of phosphoprotein phosphatase inhibitors, free Mg2+ and 5-AMP. Planta 93: 358–364

    Google Scholar 

  • Kaiser WM, Spill D (1991) Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis. II. In vitro modulation by ATP and AMP. Plant Physiol 96: 368–375

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Spill D, Brendle-Behnisch E (1992) Adenine nucleotides are apparently involved in the light-dark modulation of spinach leaf nitrate reductase. Planta 186: 236–240

    Article  CAS  Google Scholar 

  • Kaiser WM, Spill D, Glaab J (1993) Rapid modulation of nitrate reductase in leaves and roots: indirect evidence for involvement of protein phosphorylation/dephosphorylation. Physiol Plant 89: 557–562

    Article  CAS  Google Scholar 

  • LaBrie ST, Crawford NM (1994) Glycine to aspartic acid change in the MoCo domain of nitrate reductase reduces both activity and phosphorylation levels in Arabidopsis. J Biol Chem 269: 14497–14501

    PubMed  CAS  Google Scholar 

  • Lewis OAM (1986) Plants and nitrogen. Edward Arnold, London.

    Google Scholar 

  • Li B, Chollet R (1993) Resolution and identification of C4 phosphorenolpyravate carboxylase protein-kinase polypeptides and their reversible light activation in maize leaves. Arch Biochem Biophys 307: 416–419

    Article  PubMed  CAS  Google Scholar 

  • Li X-Z, Oaks A (1993) Induction and turnover of nitrate reductase in Zea mays. Influence of NO3 − Plant Physiol 102: 1251–1257

    PubMed  CAS  Google Scholar 

  • Lillo C (1994) Light regulation of nitrate reductase in green leaves of higher plants. Physiol Plant 90: 616–620

    Article  CAS  Google Scholar 

  • MacKintosh C (1992) Regulation of spinach-leaf nitrate reductase by protein phosphorylation. Biochim Biophys Acta 1137: 121–126

    Article  PubMed  CAS  Google Scholar 

  • McMichael RW Jr, Klein RR, Salvueci ME, Huber SC (1993) Identification of the major regulatory phosphorylation site in sucrose-phosphate synthase. Arch Biochem Biophys 307: 248–252

    Article  PubMed  CAS  Google Scholar 

  • McMichael RW Jr, Koehansky J, Klein R, Huber SC (1994) Characterization of sucrose-phosphate synthase protein kinase. Plant Physiol 104 [Suppl]: 91.

    Google Scholar 

  • McNaughton GAL, MacKintosh C, Fewson CA, Wilkins MB, Nimmo HG (1991) Illumination increases the phosphorylation state of maize leaf phosphorenolpyravate carboxylase by causing an increase in the activity of a protein kinase. Biochim Biophys Acta 1093: 189–195

    Article  PubMed  CAS  Google Scholar 

  • Manh T, Bismuth E, Boutin J-P, Provot M, Champigny M-L (1993) Metabolite effectors for short-term nitrogen-dependent enhancement of phosphorenolpyravate carboxylase activity and decrease of net sucrose synthesis in wheat leaves. Physiol Plant 89: 460–466

    Article  Google Scholar 

  • Müller R, Steigner W, Gimmler H, Kaiser WM (1990) Effect of ammonium on dark-CO2-fixation and on cytosolic and vacuolar pH values in Eremosphaera viridis de Bary (Chlorococcales). J Exp Bot 41: 441–448

    Article  Google Scholar 

  • Müller R, Baier M, Kaiser WM (1991) Differential stimulation of PEP-carboxylation in guard cells and mesophyll cells by ammonium or fusicoccin. J Exp Bot 42: 215–220

    Article  Google Scholar 

  • Neuhaus HE, Quick WP, Siegl G, Stitt M (1990) Control of photosynthate partitioning in spinach leaves. Analysis of the interaction between feedforward and feedback regulation of sucrose synthesis. Planta 181: 583–592

    Article  CAS  Google Scholar 

  • Nimmo HG (1992) The regulation of phosphorenolpyravate carboxylase by reversible phosphorylation. In: Battey NH, Dickinson HG, Hetherington AM (eds) Post-translational modification in plants. Cambridge University Press, Cambridge, pp 161–170. (Society for Experimental Biology seminar series 53)

    Google Scholar 

  • Pace GM, Volk RJ, Jackson WA (1990) Nitrate reduction in response to CO2-limited photosynthesis. Relationship to carbohydrate supply and nitrate reductase activity in maize seedlings. Plant Physiol 92: 286–292

    Article  PubMed  CAS  Google Scholar 

  • Pate JS (1983) Patterns of nitrogen metabolism in higher plants and their ecological significance. In: Lee JA, McNeill S, Rorison EH (eds) Nitrogen as an ecological factor. Blackwell, Oxford, pp 225–255

    Google Scholar 

  • Pierre J-N, Pacquit V, Vidal J, Gadal P (1992) Regulatory phosphorylation of phosphorenolpyruvate carboxylase in protoplasts from Sorghum mesophyll cells: pH and Ca2+ as possible components of the light transduction pathway. Eur J Biochem 210: 531–537

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra AS, Yin Z-H, Heber U (1993) Light-dependent pH changes in leaves of C4 plants. Comparison of the pH response to carbon dioxide and oxygen with that of C3 plants. Planta 189: 278–287

    Article  CAS  Google Scholar 

  • Rajagopalan AV, Tirumala Devi M, Raghavendra AS (1993) Patterns of phosphorenolpyravate carboxylase activity and cytosolic pH during light activation and dark deactivation in C3 and C4 plants. Photosynth Res 38: 51–60

    Article  CAS  Google Scholar 

  • Rajagopalan AV, Tirumala Devi M, Raghavendra AS (1994) Molecular biology of C4 phosphoenolpymvate carboxylase: structure, regulation and genetic engineering. Photosynth Res 39: 115–135

    Article  CAS  Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76: 415–431

    Article  CAS  Google Scholar 

  • Reggiani R, Mattana M, Aurisano N, Bertani A (1993) Utilization of stored nitrate during the anaerobic germination of rice seeds. Plant Cell Physiol 34: 379–383

    CAS  Google Scholar 

  • Reimholz R, Geigenberger P, Stitt M (1994) Sucrose-phosphate synthase is regulated via metabolites and protein phosphorylation in potato tubers, in a manner analogous to the enzyme in leaves. Planta 192: 480–488

    Article  CAS  Google Scholar 

  • Riens B, Heldt HW (1992) Decrease of nitrate reductase activity in spinach leaves during a light-dark transition. Plant Physiol 98: 573–577

    Article  PubMed  CAS  Google Scholar 

  • Riens B, Lohaus G, Heineke D, Heldt HW (1991) Amino acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the phloem sap of spinach leaves. Plant Physiol 97: 227–233

    Article  PubMed  CAS  Google Scholar 

  • Riens B, Lohaus G, Winter H, Heldt HW (1994) Production and diurnal utilization of assimilates in leaves of spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.). Planta 192:497–501

    Article  CAS  Google Scholar 

  • Robinson JM (1988) Spinach leaf chloroplast CO2 and NO2 − photoassimilations do not compete for photogenerated reductant. Plant Physiol 88: 1373–1380

    Article  PubMed  CAS  Google Scholar 

  • Robinson JM, Baysdorfer C (1985) Interrelationships between carbon and nitrogen metabolism in mature soybean leaves and isolated leaf mesophyll cells. In: Heath RL, Preiss J (eds) Regulation of carbon partitioning in photosynthetic tissues. American Society of Plant Physiologists, Rockville, MD, pp 333–357

    Google Scholar 

  • Schuller KA, Plaxton WC, Turpin DH (1990) Regulation of phosphoenolpyruvate carboxylase from the green alga Selenastrum minutum. Plant Physiol 93: 1303–1311

    Article  PubMed  CAS  Google Scholar 

  • Schweizer P, Erismann KH (1985) Effect of nitrate and ammonium nutrition on non-nodulated Phaseolus vulgaris L. on phosphorenolpyruvate carboxylase and pyruvate kinase activity. Plant Physiol 78: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Shannon JC, Paul MJ, Huber SC (1994) Amino acids as effectors of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves. Plant Physiol 104 [Suppl]: 91

    Google Scholar 

  • Shiraishi N, Sato T, Ogura N, Nakagawa H (1992) Control by glutamine of the synthesis of nitrate reductase in cultured spinach cells. Plant Cell Physiol 33: 727–731

    CAS  Google Scholar 

  • Siegl G, MacKintosh C, Stitt M (1990) Sucrose-phosphate synthase is dephosphorylated by protein phosphatase 2A in spinach leaves. Evidence from the effects of okadaic acid and microcystin. FEBS Lett 270: 198–202

    Article  PubMed  CAS  Google Scholar 

  • Speer M, Kaiser WM (1991) Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiol 97: 990–997

    Article  PubMed  CAS  Google Scholar 

  • Spill D, Kaiser WM (1994) Partial purification of two proteins (100 kDa and 67 kDa), cooperating in the ATP-dependent inactivation of spinach leaf nitrate reductase. Planta 192: 183–188

    Article  CAS  Google Scholar 

  • Stitt M, Schulze D (1994) Does Rubisco control the rate of photosynthesis and plant growth? An excercise in molecular ecophysiology. Plant Cell Environ 17: 465–487

    Article  CAS  Google Scholar 

  • Stitt M, Huber SC, Kerr P (1987) Control of photosynthetic sucrose synthesis. In: Hatch MD, Boardman NR (eds) The biochemistry of plants, vol 10. Academic Press, New York, pp 328–429

    Google Scholar 

  • Stitt M, Wilke I, Feil R, Heldt HW (1988) Coarse control of sucrose-phosphate synthase in leaves: alterations of the kinetic properties in response to the rate of photosynthesis and the accumulation of sucrose. Planta 174: 217–230

    Article  CAS  Google Scholar 

  • Sugiharto B, Suzuki L, Burnell JN, Sugiyama T (1992) Glutamine induces the N-dependent accumulation of mRNAs encoding phosphorenolpyruvate carboxylase and carbonic anhydrase and detached maize leaf tissue. Plant Physiol 100: 2066–2070

    Article  PubMed  CAS  Google Scholar 

  • Van Quy L, Champigny M-L (1992) N03 − enhances the kinase activity for phosphorylation of phosphorencolpyruvate carboxylase and sucrose phosphate synthase proteins in wheat leaves. Plant Physiol 99: 344–347

    Article  Google Scholar 

  • Van Quy L, Foyer C, Champigny M-L (1991) Effect of light and nitrate on wheat leaf phosphorenolpyruvate carboxylase activity. Evidence for covalent modulation of the C3 enzyme. Plant Physiol 97: 1476–1482

    Article  Google Scholar 

  • Vanleberghe GC, Sehuller KA, Smith RG, Feil R, Plaxton WC, Turpin DH (1990) Relationship between NH4 + assimilation rate and in vivo phosphorenolpyruvate carboxylase activity. Regulation of anaplerotic carbon flow in the green alga Selenastrum minutum. Plant Physiol 94: 284–290

    Article  Google Scholar 

  • Vidal J, Pierre J-N, Echevarria C (1996) The regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase: a cardinal event in C4 photosynthesis. In: Verma DPS (ed) Signal transduction in plant growth and development. Springer, Wien New York, pp 141–166 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]

    Google Scholar 

  • Wang Y-H, Chollet R (1993a) In vitro phosphorylation of purified tobacco-leaf phosphorenolpyruvate carboxylase. FEBS Lett 328: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-H, Chollet R (1993b) Partial purification and characterization of phosphorenolpyruvate carboxylase protein-serine kinase from illuminated maize leaves. Arch Biochem Biophys 304: 496–502

    Article  PubMed  CAS  Google Scholar 

  • Weiner H, McMichael RW, Huber SC (1992) Identification of factors regulating the phosphorylation status of sucrose-phosphate synthase in vivo. Plant Physiol 99: 1435–1442

    Article  PubMed  CAS  Google Scholar 

  • Weiner H, Weiner H, Stitt M (1993) Sucrose-phosphate synthase phosphatase, a type 2A protein phosphatase, changes its sensitivity towards inhibition by inorganic phosphate in spinach leaves. FEBS Lett 333: 159–164

    Article  PubMed  CAS  Google Scholar 

  • Winter H, Lohaus G, Heldt HW (1992) Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. Plant Physiol 99: 996–1004

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this chapter

Cite this chapter

Huber, S.C., Kaiser, W.M. (1996). Regulation of C/N Interactions in Higher Plants by Protein Phosphorylation. In: Verma, D.P.S. (eds) Signal Transduction in Plant Growth and Development. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7474-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7474-6_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7476-0

  • Online ISBN: 978-3-7091-7474-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics