Ex-Planta and In-Planta Signals in Legume-Rhizobium Interaction

  • Zonglie Hong
  • Desh Pal S. Verma
Part of the Plant Gene Research book series (GENE)


Nodule organogenesis is a highly-programmed developmental process triggered by rhizobial signal molecules and controlled by both Rhizobium and plant (Verma, 1992; Fisher and Long, 1992; Hirsch, 1992). Formation of Rhizobium-legume symbiosis provides a unique experimental system for genetic and molecular studies for communication between bacteria and host plants. Plant flavonoids and rhizobial Nod factors (modified oligosaccharides) are two classes of unique signal molecules that represent direct communication between these two organisms. The host roots exude flavonoids that act as chemotactic agents to attract the rhizobia to move towards the root surface and, more importantly, as strong inducers to initiate rhizobial nod gene expression. The nod genes encode enzymes responsible for biosynthesis and secretion of Nod factors (Carlson et al., 1994). Induction of the nod gene expression results in the production of Nod factors that elicit morphological changes in the host roots. These changes include root hair curling, formation of nodule primodia in the cortical cell and nodule organogenesis.


Root Hair Rhizobium Leguminosarum Bradyrhizobium Japonicum Infection Thread Legume Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ardourel M, Demont N, Debelle F, Maillet F, deBilly F, Prome J-C, Denarie J, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6: 1357–1374PubMedGoogle Scholar
  2. Atkinson E, Palcic M, Hindsgaul L, Long S (1994) Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci USA 91: 8418–8422PubMedGoogle Scholar
  3. Atzorn R, Crozier A, Wheeler C, Sandberg G (1988) Production of gibberellins and indole-3- acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175: 532–538Google Scholar
  4. Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A (1991) Six nodulation genes of nod box locus-4 in Rhizobium meliloti are involved in nodulation signal production—nodM codes for D-glucosamine synthetase. Mol Gen Genet 228: 113–124PubMedGoogle Scholar
  5. Banfalvi Z, Nieuwkoop AJ, Schell M, Besl L, Stacey G (1988) Regulation of nod gene expression in Bradyrhizobium japonicum. Mol Gen Genet 214: 420–424PubMedGoogle Scholar
  6. Battisti L, Lara JC, Leigh JA (1992) Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc Natl Acad Sci USA 89: 5625–5629PubMedGoogle Scholar
  7. Bauer P, Crespi M, Szecsi J, Allison L, Schultze M, Ratet P, Kondorosi E, Kondorosi A (1994) Alfalfa Enodl2 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion. Plant Physiol 105: 585–592PubMedGoogle Scholar
  8. Bibb MJ, Biro S, Motamedi H, Collins JF, Hutchinson CR (1989) Analysis of the nucleotide sequence of the Streptomyces glaucescens tmcl gene provides information about the enzymology of polyketide antibiotic biosynthesis. EMBO J 8: 2727–2736PubMedGoogle Scholar
  9. Biffen M, Hanke D (1990) Polyphosphoinositidase activity in soybean membranes is Ca2+- dependent and shows no requirement for guanine-nucleotides. Plant Sci 69: 147–155Google Scholar
  10. Bloemberg GV, Thomas OJ, Lugtenberg B, Spaink HP (1994) Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetyl-glucosamine in vitro. Mol Microbiol 11: 793–804PubMedGoogle Scholar
  11. Brink BA, Miller J, Carlson RW, Noel KD (1990) Expression of Rhizobium leguminosarum CFN42 genes for lipopolysaccharides in strains derived from different R. leguminosarum soil isolates. J Bacteriol 172: 548–555PubMedGoogle Scholar
  12. Cantley L, Auger K, Carpenter C, Duckworth B, Graziani A, Kapller R, Soltoff S (1991) Oncogenes and signal transduction. Cell 64: 281–302PubMedGoogle Scholar
  13. Carlson R, Price N, Stacey G (1994) The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant Microbe Interact 7: 684–695PubMedGoogle Scholar
  14. Cervantes E, Sharma SB, Maillet F, Vasse J, Truchet G, Rosenberg C (1989) The Rhizobium meliloti host range nodQ gene encodes a protein which shares homology with translation elongation and initiation factors. Mol Microbiol 3: 745–755PubMedGoogle Scholar
  15. Cheon C, Hong Z, Verma DPS (1994) Nodulin-24 follows a novel pathway for integration into the peribacteroid membrane in soybean root nodules. J Biol Chem 269: 6598–6602PubMedGoogle Scholar
  16. Clover RH, Kieber J, Signer ER (1989) Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis. J Bacteriol 171: 3961–3967PubMedGoogle Scholar
  17. Cooper JB, Long SR (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by tams-zeatin secretion. Plant Cell 6: 215–225PubMedGoogle Scholar
  18. Davis EO, Johnston AWB (1990) Regulatory functions of the 3 nodD genes of Rhizobium leguminosarum biovar phaseoli. Mol Microbiol 4: 933–941PubMedGoogle Scholar
  19. Davis EO, Evans EJ, Johnston AWB (1988) Identifications of nodX, a gene that allows Rhizobium leguminosarum biovar viciae strain TOM to nodulate Afganistan peas. Mol Gen Genet 212: 531–535PubMedGoogle Scholar
  20. Day DA, Yang L-JO, Udardi MK (1990) Nutrient exchange across the peribacteroid membrane of isolated symbiosomes. In: Gresshoff P, Roth J, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York pp 219–226Google Scholar
  21. De Jong AJ, Heidstra R, Spaink HP, Hartog MY, Meijer EA, Hendriks T, Lo Shiaovo F, Terzi M, Bisseling T, Van Kammen A, De Vries SC (1993) Rhizobium lipo-oligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5: 615–620PubMedGoogle Scholar
  22. Debelle F, Rosenberg C, Vasse J, Maillet F, Martinez E, Denarie J, Truchet G (1986) Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti. J Bacteriol 168: 1057–1086Google Scholar
  23. Demont N, Debelle F, Aurelle H, Denarie J, Prome J (1993) Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. J Biol Chem 268: 20134–20142PubMedGoogle Scholar
  24. Demont N, Ardourel M, Maillet F, Prome D, Ferro M, Prome J-C, Denarie J (1994) The Rhizobium meliloti regulatory nodD3 and syrM genes control the synthesis of a particular class of nodulation factors iV-acylated by (cω-1)-hydroxylated fatty acids. EMBO J 13: 2139–2149PubMedGoogle Scholar
  25. Dénarié J, Debellé F, Rosenberg C (1992) Signaling and host range variation in nodulation. Annu Rev Microbiol 46: 497–531PubMedGoogle Scholar
  26. Diebold R, Noel KD (1989) Rhizobium leguminosarum exopolysaccharide mutants: biochemical and genetic analysis and symbiotic behavior on three hosts. J Bacteriol 171: 4821–4830PubMedGoogle Scholar
  27. Djordjevic M, Gabrielle D, Rolfe B (1987a) Rhizobium—the refined parasite of legumes. Annu Rev Phytopathol 25: 145–168Google Scholar
  28. Djordjevic M, Redmond JW, Batley M, Rolfe BG (1987b) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:1173–1179PubMedGoogle Scholar
  29. Djordjevic M, Chen H, Batley M, Redmond JW, Rolfe BG (1987) Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NG234 and Rhizobium trifolii is restored by addition of homologous exopolysaccharide. J Bacteriol 169: 53–60PubMedGoogle Scholar
  30. Dockendorff T, Sharma A, Stacey G (1994) Identification and characterization of the nolYZ genes of Bradyrhizobium japonicum. Mol Plant Microbe Interact 7: 173–180PubMedGoogle Scholar
  31. Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25: 173–199PubMedGoogle Scholar
  32. Downie J A (1989) The nodL gene from Rhizobium leguminosarum is homologous to the acetyl transferases encoded by iacA and cysE. Mol Microbiol 3: 1649–1651PubMedGoogle Scholar
  33. Drobak B (1992) The plant phosphoinositide system. Biochem J 288: 697–712PubMedGoogle Scholar
  34. Dusha I, Kondorosi A (1993) Genes at different regulatory levels are required for the ammonia control of nodulation in Rhizobium meliloti. Mol Gen Genet 240: 435–444PubMedGoogle Scholar
  35. Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester E, Helinski DR, Ditta G (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83: 4404–4407Google Scholar
  36. Dylan T, Helinski DR, Ditta GS (1990a) Hypoosmotic adaptation in Rhizobium meliloti required β-(1-→2)-glucan. J Bacteriol 172: 1400–1408PubMedGoogle Scholar
  37. Dylan T, Nagpal P, Helinski DR, Ditta GS (1990b) Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants. J Bacteriol 172: 1409–1417PubMedGoogle Scholar
  38. Economou A, Hamilton WDO, Johnston AWB, Downier J A (1990) The Rhizobium nodulation gene nodO encodes a Ca2+-binding protein that is exported without TV-terminal cleavage and is homologous to haemolysin and related proteins. EMBO J 9: 349–354PubMedGoogle Scholar
  39. Egelhoff TT, Long SR (1985) Rhizobium meliloti nodulation genes: identification of nodDABC gene products, purification of NodA protein, and expression of nodA in Rhizobium meliloti. J Bacteriol 164: 591–599PubMedGoogle Scholar
  40. Ehrhardt DW, Atkinson EM, Long SR (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256: 998–1000PubMedGoogle Scholar
  41. Estabrook EM, Sengupta-Gopalan C (1991) Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell 3: 299–308PubMedGoogle Scholar
  42. Evans I J, Downie JA (1986) The nodI gene product of Rhizobium leguminosarum is closely related to Atp-binding bacterial transport proteins: nucleotide sequence analysis of the nodI and nodJ genes. Gene 43: 95–101PubMedGoogle Scholar
  43. Faucher C, Camut S, Denarie J, Truchet G (1989) The nodH and nodQ host range genes of Rhizobium meliloti behave as avirulence genes in R. leguminosarum bv. viciae and determine changes in the production of plant-specific extracellular signals. Mol Plant Microbe Interact 2: 291–300Google Scholar
  44. Fearn JC, Larue TA (1991) A temperature-sensitive nodulation mutant (Sym-5) of Pisum sativum L. Plant Cell Environ 14: 221–227Google Scholar
  45. Finan TM, Hirsch AM, Leigh JA, Johnson E, Kuldau GA, Deegan S, Walker GC, Signer ER (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40: 869–877PubMedGoogle Scholar
  46. Firmin J, Wilson K, Carlson R, Davies A, Downier J (1993) Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 10: 351–360PubMedGoogle Scholar
  47. Fisher RF, Long SR (1992) Rhizobium-plant signal exchange. Nature 357: 655–660PubMedGoogle Scholar
  48. Fisher RF, Egelhoff TT, Mulligan JT, Long SR (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to Dna sequences upstream of inducible nodulation genes. Genes Dev 2: 282–293PubMedGoogle Scholar
  49. Fortin MG, Zelechowska M, Verma DPS (1985) Specific targeting of membrane nodulins to the bacteroid-enclosing compartment in soybean nodules. EMBO J 4: 3041–3046PubMedGoogle Scholar
  50. Fortin MG, Morrison NA, Verma DPS (1987) Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15: 813–824PubMedGoogle Scholar
  51. Fukuhara H, Minakawa Y, Akao S, Minamisawa K (1994) The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol 35: 1261–1265Google Scholar
  52. Geelen D, Mergaert P, Geremia RA, Goormachtig S, Van Montagu M, Holsters M (1993) Identification of nodSUIJ genes in nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification. Mol Microbiol 9: 145–154PubMedGoogle Scholar
  53. Geremia RA, Mergaert P, Geelen D, Van Montagu M, Holsters M (1994) The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci USA 91: 2669–2673PubMedGoogle Scholar
  54. Glazebrook J, Walker GC (1989) A novel exopolysaccharide can function in place of the caicofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56: 661–672PubMedGoogle Scholar
  55. Goodlass G, Smith KA (1979) Effect of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51: 387–395Google Scholar
  56. Göttfert M (1993) Regulation and function of rhizobial nodulation genes. FEMS Microbiol Rev 104: 39–64Google Scholar
  57. Gottfert M, Grob P, Hennecke H (1990) Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci USA 87: 2680–2684PubMedGoogle Scholar
  58. Grobbelaar N, Clarke B, Hough MC (1971) The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. Plant Soil Special: 215–223Google Scholar
  59. Hahlbrock K, Grisebach H (1979) Enzymatic control in the biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol 30: 105–130Google Scholar
  60. Halverson LJ, Stacey G (1986) Signal exchange in plant-microbe interactions. Microbiol Rev 50: 193–225PubMedGoogle Scholar
  61. Hartwig UA, Phillips DA (1991) Release and modification of nod gene-inducing flavonoids from alfalfa seeds. Plant Physiol 95: 804–807PubMedGoogle Scholar
  62. Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Effects of alfalfa nod gene inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J Bacteriol 172: 2769–2773PubMedGoogle Scholar
  63. Hirsch A (1992) Developmental biology of legume nodulation. New Phytol 122: 211–237Google Scholar
  64. Hirsch A, Bhuvaneswari T, Torrey J, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86: 1244–1248PubMedGoogle Scholar
  65. Ho SC, Schindler M, Wang JL (1990) Carbohydrate binding activities of Bradyrhizobium japonicum. 2. Isolation and characterization of a galactose-specific lectin. J Cell Biol 111: 1639–1643PubMedGoogle Scholar
  66. Hong Z, Verma DPS (1994) A phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc Natl Acad Sci USA 91: 9617–9621PubMedGoogle Scholar
  67. Honma MA, Ausubel FM (1987) Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene. Proc Natl Acad Sci USA 84: 8558–8562PubMedGoogle Scholar
  68. Honma MA, Asomaning M, Ausubel FM (1990) Rhizobium meliloti nodD genes mediate host-specific activation of nodABC. J Bacteriol 172: 901–911PubMedGoogle Scholar
  69. Horvath B, Kondorosi E, John M, Schmidt J, Torok I, Györgypal Z, Barabas I, Wieneke U, Schell J, Kondorosi A (1986) Organization, structure and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfalfa. Cell 46: 335–343PubMedGoogle Scholar
  70. Horvath B, Bachem CW, Schell J, Kondorosi A (1987) Host-specific regulation of nodulation genes in Rhizobium is mediated by plant-signal, interacting with the nodD gene product. EMBO J 6: 841–848PubMedGoogle Scholar
  71. Horvath B, Heidstra R, Lados M, Moerman M, Spaink HP, Promé JC, Van Kammen A, Bisseling T (1993) Lipo-oligosaecharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant J 4: 727–733PubMedGoogle Scholar
  72. Hungría M, Joseph CM, Phillips DA (1991a) Anthocyanidins and flavonols, major nod gene inducers from seeds of a black seeded common bean (Phaseolus vulgaris L). Plant Physiol 97: 751–758PubMedGoogle Scholar
  73. Hungría M, Joseph CM, Phillips DA (1991b) Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L). Plant Physiol 97: 759–764PubMedGoogle Scholar
  74. Ielpi L, Dylan T, Ditta GS, Helinski DR, Stanfield SW (1990) The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of β-(l-→ 2)-glucan. J Biol Chem 265: 2843–2851PubMedGoogle Scholar
  75. Innes R, Kuempel P, Plazinski J, Cremers H, Rolfe B, Djordjevic M (1985) Plant factors induce expression of nodulation and host-range genes in Rhizobium trifolii. Mol Gen Genet 201: 426–432Google Scholar
  76. Irvine R, Letcher A, Dawson R (1980) Phosphatidylinositol phosphodiesterase in higher plants. Biochem J 192: 279–283PubMedGoogle Scholar
  77. John M, Schmidt J, Wieneke U, Kondorosi E, Schell J (1985) Expression of the nodulation gene nodC of Rhizobium meliloti in Escherichia coli: role of the nodC gene product in nodulation. EMBO J 4: 2425–2430PubMedGoogle Scholar
  78. John M, Rohrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodD protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci USA 90: 625–629PubMedGoogle Scholar
  79. Johnson D, Roth LE, Stacey G (1989) Immunogold localization of the NodC and NodA protein of Rhizobium meliloti. J Bacteriol 171: 2425–2430Google Scholar
  80. Kapulnik Y, Joseph CM, Phillips DA (1987) Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol 84: 1193–1196PubMedGoogle Scholar
  81. Katinakis P, Verma DPS (1985) Nodulin-24 gene of soybean codes for a peptide of the peribacteroid membrane and was generated by a tandem duplication of a sequence resembling an insertion element. Proc Natl Acad Sci USA 82: 4157–4161PubMedGoogle Scholar
  82. Kinnback A, Mellor R, Werner D (1987) α-Mannosidase II isoenzyme in the peribacteroid space of Glycine max root nodules. J Exp Bot 38: 1373–1377Google Scholar
  83. Kitteil BL, Helinski DR, Ditta GS (1989) Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti. J Bacterid 171: 5458–5466Google Scholar
  84. Klein S, Hirsch AM, Smith CS, Signer ER (1988a) Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation. Mol Plant Microbe Interact 1: 94–100PubMedGoogle Scholar
  85. Klein S, Walker GC, Signer ER (1988b) All nod genes of Rhizobium meliloti are involved in alfalfa nodulation by exo mutants. J Bacteriol 170: 1003–1006PubMedGoogle Scholar
  86. Kobayashi M, Suzuki T, Fujita T, Masude M, Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA 92: 714–718PubMedGoogle Scholar
  87. Kondorosi A, Schultze M, Savoure A, Hoffmann B, Dudits D, Pierre M, L. A, Bauer P, Kiss G, Kondorosi A (1993) Control of nodule induction and plant cell growth by Nod factors. In: Nester EW, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 143–150Google Scholar
  88. Kondorosi E, Pierre M, Cren M, Haumann U, Buire M, Hoffmann B, Schell J, Kondorosi A (1991) Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti. J Mol Biol 222: 885–896PubMedGoogle Scholar
  89. Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci USA 84: 7428–7432PubMedGoogle Scholar
  90. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Mowa NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585–596PubMedGoogle Scholar
  91. Lawson C, Djordjevic M, Weinman J, Rolfe B (1994) Rhizobium inoculation and physical wounding result in the rapid induction of the same chalcone synthase copy in Trifolium subterraneum. Mol Plant Microbe Interact 7: 498–507Google Scholar
  92. Leigh JA, Coplin DL (1992) Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol 46: 307–346PubMedGoogle Scholar
  93. Leigh JA, Walker GC (1994) Exopoly saccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet 10: 63–67PubMedGoogle Scholar
  94. Leigh JA, Signer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82: 6231–6235PubMedGoogle Scholar
  95. Leigh JA, Reed JW, Hanks JF, Hirsch AM, Walker GC (1987) Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell 51: 579–587PubMedGoogle Scholar
  96. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784PubMedGoogle Scholar
  97. Libbenga KR, Van Iren F, Bogers RJ, Schraag-Lamers MF (1973) The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta 114: 29–39Google Scholar
  98. Ligero F, Caba JM, Lluch C, Olivares J (1991) Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxylglycine. Plant Physiol 97: 1221–1225PubMedGoogle Scholar
  99. Long S (1992) Genetic analysis of Rhizobium nodulation. In: Stacey G, Burns R, Evans H (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 560–597Google Scholar
  100. Manen JF, Simon P, Vanslooten JC, Osteras M, Frutiger S, Hughes GJ (1991) A nodulin specifically expressed in senescent nodules of winged bean is a protease inhibitor. Plant Cell 3: 259–270PubMedGoogle Scholar
  101. Marie C, Barny MA, Downie JA (1992) Rhizobium leguminosarum has two glucosamine synthases, glmS and nodM, required for nodulation and development of nitrogen-fixing nodules. Mol Microbiol 6: 843–851PubMedGoogle Scholar
  102. Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) A ehaleone and 2 related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol 91: 842–847PubMedGoogle Scholar
  103. Miao GH, Hong Z, Verma DPS (1992) Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane. J Cell Biol 118: 481–490PubMedGoogle Scholar
  104. Morrison N, Verma DPS (1987) A block in the endocytosis of Rhizobium allows cellular differentiation in nodules but affects the expression of some peribacteroid membrane nodulins. Plant Mol Biol 9: 185–196Google Scholar
  105. Mulligan J, Long S (1985) Induction of Rhizobium meliloti nodC expression by plant exudates requires nodD. Proc Natl Acad Sci USA 82: 1–5Google Scholar
  106. Noel KD (1992) Rhizobial polysaccharides required in symbioses with legumes. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press, Boca Raton, pp 341–357Google Scholar
  107. Noel KD, Vandenosch KA, Kalpaca B (1986) Mutations in Rhizobium phaseoli that lead to arrested development of infection threads. J Bacteriol 168: 1392–1401PubMedGoogle Scholar
  108. OO’Connell KP, Araujo RS, Handelsman J (1990) Exopolysaccharide-deficient mutants of Rhizobium sp. strain CIAT899 induce chlorosis in common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 3: 424–428Google Scholar
  109. Orgambide GG, Philip-Hollingsworth S, Hollingsworth RI, Dazzo FB (1994) Flavone-enhanced accumulation and symbiosis-related biological activity of a diglycosyl diacylglycerol membrane glycolipid from Rhizobium leguminosarum biovar trifolii. J Bacteriol 176: 4338–4347PubMedGoogle Scholar
  110. Perotto S, Brewin NJ, Kannenberg EL (1994) Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaceharide-defective mutants of Rhizobium leguminosarum strain 3841. Mol Plant Microbe Interact 7: 99–112Google Scholar
  111. Peters N, Frost J, Long S (1986) A plant flavone luteloin induces expression of Rhizobium meliloti nodulation genes. Science 233: 977–980PubMedGoogle Scholar
  112. Peters NK, Crist-Estes DK (1989) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 91: 690–693PubMedGoogle Scholar
  113. Petrovics G, Putnoky P, Reuhs B, Kim J, Thorp TA, Noel KD, Carlson RW, Kondorosi A (1993) The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development. Mol Microbiol 8: 1083–1094PubMedGoogle Scholar
  114. Philip-Hollingsworth S, Hollingswoth RI, Dazzo FB (1991) N-acetylglutamic acid: an extracellular nod signal of Rhizobium trifolii ANU843 that induces root hair branching and nodulelike primordia in white clover roots. J Biol Chem 266: 16854–16858PubMedGoogle Scholar
  115. Phillips DA, Torrey JG (1971) Studies on cytokinin production by Rhizobium. Plant Physiol 49: 11–15Google Scholar
  116. Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99: 1526–1531PubMedGoogle Scholar
  117. Priefer UB (1989) Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae Vf39. J Bacteriol 171: 6161–6168PubMedGoogle Scholar
  118. Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, Degreef J, Schell J, Vanonckelen H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. Ind J Exp Biol 29: 184–186Google Scholar
  119. Recourt K, van Brussel AAN, Driessen AJM, Lugtenberg BJJ (1989) Accumulation of a nod gene inducer, the flavonoid narigenin, in the cytoplasmic membrane of Rhizobium leguminosarum biovar viciae is caused by the pH-dependent hydrophobicity of naringenin. J Bacteriol 171: 4370–4377PubMedGoogle Scholar
  120. Recourt K, Schripsema J, Kijne J, van Brussel A, Lugtenberg B (1991) Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol Biol 16: 841–852PubMedGoogle Scholar
  121. Relic B, Perret X, Estrada-Garcia MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994) Nod-factors of Rhizobium are a key to the legume door. Mol Microbiol 13: 171–178PubMedGoogle Scholar
  122. Reuhs B, Kim J, Badgett A, Carlson R (1994) Production of cell-associated polysaccharides of Rhizobium fresii USDA205 is modulated by apigenin and host root extract. Mol Plant Microbe Interact 7: 240–247PubMedGoogle Scholar
  123. Robertson J, Lyttleton P (1982) Coated and smooth vesicles in the biogenesis of cell walls plasma membranes infection threads and peribacteroid membranes in root hairs and nodules of white clover. J Cell Sci 58: 63–78PubMedGoogle Scholar
  124. Rocher P, Debelle F, Maillet F, Lerouge P, Faucher C, Trachet G, Dénarié J, Promé JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti—nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67: 1131–1143Google Scholar
  125. Rohrig H, Schmidt J, Wieneke U, Kondorosi E, Barlier I, Schell J, John M (1994) Biosynthesis of lipooligosaccharide nodulation factors: Rhizobium NodA protein is involved in TV-acylation of the chitooligosaccharide backbone. Proc Natl Acad Sci USA 91: 3122–3126PubMedGoogle Scholar
  126. Rossen L, Shearman C, Johnston A, Downie J (1985) The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodABC genes. EMBO J 4: 3369–3373PubMedGoogle Scholar
  127. Roth L, Stacey G (1989) Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Brady rhizobium japonicum mutant strains. Eur J Cell Biol 49: 24–32PubMedGoogle Scholar
  128. Sadowsky M, Olson E, Foster V, Kosslak R, Verma DPS (1988) Two host-inducible genes of Rhizobium fredii and characterization of the inducing compound. J Bacteriol 170: 171–178PubMedGoogle Scholar
  129. Sanjuan J, Grop P, Göttfert M, Hennecke H, Stacey G (1994) NodW is essential for Ml expression of the common nodulation genes in Bradyrhizobium japonicum. Mol Plant Microbe Interact 7: 364–369Google Scholar
  130. Savoure A, Magyar Z, Pierre M, Brown S, Schultze M, Dudits D, Kondorosi A, Kondorosi E (1994) Activation of the cell machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. EMBO J 13: 1093–1102PubMedGoogle Scholar
  131. Scheres B, McKhann HI, Zalensky A, Lobler M, Bisseling T, Hirsch AM (1992) The PsENOD12 gene is expressed at two different sites in Afghanistan pea pseudonodules induced by auxin transport inhibitors. Plant Physiol 100: 1649–1655PubMedGoogle Scholar
  132. Scheu A, Economou A, Hong G, Ghelani S, Johnston A, Downie J A (1992) Secretion of the Rhizobium leguminosarum nodulation protein NodO by haemolysin-type systems. Mol Microbiol 6: 231–238PubMedGoogle Scholar
  133. Schlaman HR, Spaink HP, Okker RJ, Lugtenberg BJ (1989) Subcellular localization of the nodD gene product in Rhizobium leguminosarum. J Bacteriol 171: 4686–4693PubMedGoogle Scholar
  134. Schlaman HRM, Okker RJH, Lugtenberg BJJ (1990) Subcellular localization of the Rhizobium leguminosarum nodi gene product. J Bacteriol 172: 5486–5489PubMedGoogle Scholar
  135. Schmidt J, John M, Wieneke U, Krussmann H-D, Schell J (1986) Expression of the nodulation gene nodA in Rhizobium meliloti and localization of the gene product in the cytosol. Proc Natl Acad Sci USA 83: 9581–9585PubMedGoogle Scholar
  136. Schmidt J, Wingender R, John M, Wieneke U, Schell J (1988) Rhizobium meliloti nodA and nodB genes are involved in generating compounds that stimulate mitosis of plant cells. Proc Natl Acad Sci USA 85: 8575–8582Google Scholar
  137. Schmidt J, Röhrig H, John M, Wieneke U, Stacey G, Koncz C, Schell J (1993) Alteration of plant growth and development by Rhizobium nodA and nodB genes involved in the synthesis of oligosaccharide signal molecules. Plant J 4: 651–658Google Scholar
  138. Schmidt PE, Broughton WJ, Werner D (1994) Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Mol Plant Microbe Interact 7: 384–390Google Scholar
  139. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260: 88–91PubMedGoogle Scholar
  140. Schwedock J, Long SR (1990) Atp sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature 348: 644–647PubMedGoogle Scholar
  141. Sheaman CA, Rossen I, Johnson AWB, Downie JA (1986) The Rhizobium legummas arum nodulation gene nodF encodes a polypeptide similar to acyl carrier protein and is regulated by nodD plus a factor in pea root exudate. EMBO J 5: 647–652Google Scholar
  142. Smit G, Puvanesrajah V, Carlson RW, Babour WM, Stacey G (1992) Bradyrhizobium japonicum nodDl can be specifically induced by soybean flavonoids that do not induce the nosYABCSUIJ operon. J Biol Chem 267: 310–318Google Scholar
  143. Spaink HP, Sheeley DM, van Brussel AAN, Glushka J, York VN, Lugtenberg BJJ (1991) A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354: 125–129PubMedGoogle Scholar
  144. Spaink HP, Wijffelman CA, Pees E, Okker RJH, Lugtenberg BJJ (1989) Localization of functional regions of the Rhizobium nodD product using hybrid nodD genes. Plant Mol Biol 12: 59–73Google Scholar
  145. Stacey G, Luka S, Sanjuan J, Banfalvi Z, Niewkoop AJ, Chun JY, Forsberg LS, Carlson R (1994) nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol 176: 620–633PubMedGoogle Scholar
  146. Staehelin C, Granado J, MMüllerller J, Wiemken A, Mellor RB, Felix G, Regenass M, Broughton WJ, Boiler T (1994a) Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proc Natl Acad Sci USA 91: 2196–2200PubMedGoogle Scholar
  147. Staehelin C, Schultze M, Kondorosi E, Mellor RB, Boiler T, Kondorosi A (1994b) Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant J 5: 319–330Google Scholar
  148. Stanfield SW, Ielpi L, O’Brochta D, Helinski DR, Ditta GS (1988) The ndvA gene product of Rhizobium meliloti is required for (3-(l —> 2) glucan production and has homology to the atp-binding export protein HlyB. J Bacteriol 170: 3523–3530PubMedGoogle Scholar
  149. Stephens L, Smrcka A, Cooke F, Jackson T, Sternweis, Hawkins P (1994) A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγsubunits. Cell 77: 83–93PubMedGoogle Scholar
  150. Stokkermans TJW, Peters NK (1994) Bradyrhizobium elkanii lipo-oligosaccharide signals induce complete nodule structures on Glycine soja. Planta 193: 413–420Google Scholar
  151. Sturtevant D, Taller B (1989) Cytokinin production by Bradyrhizobium japonicum. Plant Physiol 89: 1247–1252PubMedGoogle Scholar
  152. Surin BP, Downie JA (1988) Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host specific nodulation. Mol Microbiol 2: 173–183PubMedGoogle Scholar
  153. Surin BP, Watson JM, Hamilton WDO, Economou A, Downie JA (1990) Molecular characterization of the nodulation gene, nodT, from 2 biovars of Rhizobium leguminosarum. Mol Microbiol 4: 245–252PubMedGoogle Scholar
  154. Sutton J, Lea E, Downie J (1994) The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proc Natl Acad Sci USA 91: 9990–9994PubMedGoogle Scholar
  155. Taller BJ, Sturtevant DB (1991) Cytokinin production by rhizobia. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 215–221Google Scholar
  156. Thimann KV (1936) On the physiology of the formation of nodules on legume roots. Proc Natl AcadSci USA 22:511–514PubMedGoogle Scholar
  157. Truchet G, Barker DG, Camut S, Debilly F, Vasse J, Huguet T (1989) Alfalfa nodulation in the absence of Rhizobium. Mol Gen Genet 219: 65–68Google Scholar
  158. Valius M, Kazlauskas A (1993) Phospholipase C-γ 1 and phosphatidylinositol 3 kinase are the downstream mediators of the pdgf receptor’s mitogenic signal. Cell 73: 321–334PubMedGoogle Scholar
  159. Van Brussel AAN, Recourt K, Pees E, Spaink HP, Tak T, Wijffelman CA, Kijm JW, Lugtenberg BJJ (1990) A biovar-specific signal of Rhizobium leguminosarum bv viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. nigra. J Bacteriol 172: 5394–5401PubMedGoogle Scholar
  160. Van Der Meer I, Stuitje A, Mol J (1993) Regulation of general phenylpropanoid and flavonoid gene expression. In: Verma DPS (ed) Control of plant gene expression. CRC Press, Boca Raton, pp 125–155Google Scholar
  161. Vanrhijn PJS, Feys B, Verreth C, Vanderleyden J (1993) Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J Bacteriol 175: 438–447Google Scholar
  162. Vazquez M, Santana O, Quinto C (1993) The Nodi and NodJ proteins from Rhizobium and Brady rhizobium strains are similar to capsular polysaccharide secretion proteins from Gram-negative bacteria. Mol Microbiol 8: 369–377PubMedGoogle Scholar
  163. Verma DPS (1990) Endosymbiosis of Rhizobium: internalization of the “extracellular compartment” and metabolite exchange. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 235–237Google Scholar
  164. Verma DPS (1992) Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4: 373–382PubMedGoogle Scholar
  165. Verma DPS, Nadler K (1984) Legume-Rhizobium symbiosis: host’s point of view. In: Verma DPS, Hohn T (eds) Genes involved in microbe-plant interactions. Springer, Wien New York, pp 57–93 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]Google Scholar
  166. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315: 239–242PubMedGoogle Scholar
  167. Whitman M, Downes PC, Keeler M, Keller T, Cantley L (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332: 644–646PubMedGoogle Scholar
  168. Wood EA, Butcher GW, Brewin NJ, Kannenberg EL (1980) Genetic derepression of a developmentally regulated lipopolysaccharide antigen from Rhizobium leguminosarum 3841. J Bacteriol 171: 4545–4555Google Scholar
  169. Xu P, Lloyd CW, Staiger CJ, Drobak BK (1992) Association of phosphotidylinositol 4-kinase with the plant cytoskeleton. Plant Cell 4: 941–951PubMedGoogle Scholar
  170. Yotsushima K, Nakamura K, Mitsui T, Igaue I (1992) Purification and characterization of phosphatidylinositol-specific phospholipase C in suspension-cultured cells of rice (Oriza sativa L.). Biosci Biotech Biochem 56: 1247–1251Google Scholar

Copyright information

© Springer-Verlag/Wien 1996

Authors and Affiliations

  • Zonglie Hong
  • Desh Pal S. Verma

There are no affiliations available

Personalised recommendations