Skip to main content

Ex-Planta and In-Planta Signals in Legume-Rhizobium Interaction

  • Chapter
Book cover Signal Transduction in Plant Growth and Development

Part of the book series: Plant Gene Research ((GENE))

  • 133 Accesses

Abstract

Nodule organogenesis is a highly-programmed developmental process triggered by rhizobial signal molecules and controlled by both Rhizobium and plant (Verma, 1992; Fisher and Long, 1992; Hirsch, 1992). Formation of Rhizobium-legume symbiosis provides a unique experimental system for genetic and molecular studies for communication between bacteria and host plants. Plant flavonoids and rhizobial Nod factors (modified oligosaccharides) are two classes of unique signal molecules that represent direct communication between these two organisms. The host roots exude flavonoids that act as chemotactic agents to attract the rhizobia to move towards the root surface and, more importantly, as strong inducers to initiate rhizobial nod gene expression. The nod genes encode enzymes responsible for biosynthesis and secretion of Nod factors (Carlson et al., 1994). Induction of the nod gene expression results in the production of Nod factors that elicit morphological changes in the host roots. These changes include root hair curling, formation of nodule primodia in the cortical cell and nodule organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ardourel M, Demont N, Debelle F, Maillet F, deBilly F, Prome J-C, Denarie J, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6: 1357–1374

    PubMed  CAS  Google Scholar 

  • Atkinson E, Palcic M, Hindsgaul L, Long S (1994) Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci USA 91: 8418–8422

    PubMed  CAS  Google Scholar 

  • Atzorn R, Crozier A, Wheeler C, Sandberg G (1988) Production of gibberellins and indole-3- acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175: 532–538

    CAS  Google Scholar 

  • Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A (1991) Six nodulation genes of nod box locus-4 in Rhizobium meliloti are involved in nodulation signal production—nodM codes for D-glucosamine synthetase. Mol Gen Genet 228: 113–124

    PubMed  CAS  Google Scholar 

  • Banfalvi Z, Nieuwkoop AJ, Schell M, Besl L, Stacey G (1988) Regulation of nod gene expression in Bradyrhizobium japonicum. Mol Gen Genet 214: 420–424

    PubMed  CAS  Google Scholar 

  • Battisti L, Lara JC, Leigh JA (1992) Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc Natl Acad Sci USA 89: 5625–5629

    PubMed  CAS  Google Scholar 

  • Bauer P, Crespi M, Szecsi J, Allison L, Schultze M, Ratet P, Kondorosi E, Kondorosi A (1994) Alfalfa Enodl2 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion. Plant Physiol 105: 585–592

    PubMed  CAS  Google Scholar 

  • Bibb MJ, Biro S, Motamedi H, Collins JF, Hutchinson CR (1989) Analysis of the nucleotide sequence of the Streptomyces glaucescens tmcl gene provides information about the enzymology of polyketide antibiotic biosynthesis. EMBO J 8: 2727–2736

    PubMed  CAS  Google Scholar 

  • Biffen M, Hanke D (1990) Polyphosphoinositidase activity in soybean membranes is Ca2+- dependent and shows no requirement for guanine-nucleotides. Plant Sci 69: 147–155

    CAS  Google Scholar 

  • Bloemberg GV, Thomas OJ, Lugtenberg B, Spaink HP (1994) Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetyl-glucosamine in vitro. Mol Microbiol 11: 793–804

    PubMed  CAS  Google Scholar 

  • Brink BA, Miller J, Carlson RW, Noel KD (1990) Expression of Rhizobium leguminosarum CFN42 genes for lipopolysaccharides in strains derived from different R. leguminosarum soil isolates. J Bacteriol 172: 548–555

    PubMed  CAS  Google Scholar 

  • Cantley L, Auger K, Carpenter C, Duckworth B, Graziani A, Kapller R, Soltoff S (1991) Oncogenes and signal transduction. Cell 64: 281–302

    PubMed  CAS  Google Scholar 

  • Carlson R, Price N, Stacey G (1994) The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant Microbe Interact 7: 684–695

    PubMed  CAS  Google Scholar 

  • Cervantes E, Sharma SB, Maillet F, Vasse J, Truchet G, Rosenberg C (1989) The Rhizobium meliloti host range nodQ gene encodes a protein which shares homology with translation elongation and initiation factors. Mol Microbiol 3: 745–755

    PubMed  CAS  Google Scholar 

  • Cheon C, Hong Z, Verma DPS (1994) Nodulin-24 follows a novel pathway for integration into the peribacteroid membrane in soybean root nodules. J Biol Chem 269: 6598–6602

    PubMed  CAS  Google Scholar 

  • Clover RH, Kieber J, Signer ER (1989) Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis. J Bacteriol 171: 3961–3967

    PubMed  CAS  Google Scholar 

  • Cooper JB, Long SR (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by tams-zeatin secretion. Plant Cell 6: 215–225

    PubMed  CAS  Google Scholar 

  • Davis EO, Johnston AWB (1990) Regulatory functions of the 3 nodD genes of Rhizobium leguminosarum biovar phaseoli. Mol Microbiol 4: 933–941

    PubMed  CAS  Google Scholar 

  • Davis EO, Evans EJ, Johnston AWB (1988) Identifications of nodX, a gene that allows Rhizobium leguminosarum biovar viciae strain TOM to nodulate Afganistan peas. Mol Gen Genet 212: 531–535

    PubMed  CAS  Google Scholar 

  • Day DA, Yang L-JO, Udardi MK (1990) Nutrient exchange across the peribacteroid membrane of isolated symbiosomes. In: Gresshoff P, Roth J, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York pp 219–226

    Google Scholar 

  • De Jong AJ, Heidstra R, Spaink HP, Hartog MY, Meijer EA, Hendriks T, Lo Shiaovo F, Terzi M, Bisseling T, Van Kammen A, De Vries SC (1993) Rhizobium lipo-oligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5: 615–620

    PubMed  Google Scholar 

  • Debelle F, Rosenberg C, Vasse J, Maillet F, Martinez E, Denarie J, Truchet G (1986) Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti. J Bacteriol 168: 1057–1086

    Google Scholar 

  • Demont N, Debelle F, Aurelle H, Denarie J, Prome J (1993) Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. J Biol Chem 268: 20134–20142

    PubMed  CAS  Google Scholar 

  • Demont N, Ardourel M, Maillet F, Prome D, Ferro M, Prome J-C, Denarie J (1994) The Rhizobium meliloti regulatory nodD3 and syrM genes control the synthesis of a particular class of nodulation factors iV-acylated by (cω-1)-hydroxylated fatty acids. EMBO J 13: 2139–2149

    PubMed  CAS  Google Scholar 

  • Dénarié J, Debellé F, Rosenberg C (1992) Signaling and host range variation in nodulation. Annu Rev Microbiol 46: 497–531

    PubMed  Google Scholar 

  • Diebold R, Noel KD (1989) Rhizobium leguminosarum exopolysaccharide mutants: biochemical and genetic analysis and symbiotic behavior on three hosts. J Bacteriol 171: 4821–4830

    PubMed  CAS  Google Scholar 

  • Djordjevic M, Gabrielle D, Rolfe B (1987a) Rhizobium—the refined parasite of legumes. Annu Rev Phytopathol 25: 145–168

    Google Scholar 

  • Djordjevic M, Redmond JW, Batley M, Rolfe BG (1987b) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6:1173–1179

    PubMed  CAS  Google Scholar 

  • Djordjevic M, Chen H, Batley M, Redmond JW, Rolfe BG (1987) Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NG234 and Rhizobium trifolii is restored by addition of homologous exopolysaccharide. J Bacteriol 169: 53–60

    PubMed  CAS  Google Scholar 

  • Dockendorff T, Sharma A, Stacey G (1994) Identification and characterization of the nolYZ genes of Bradyrhizobium japonicum. Mol Plant Microbe Interact 7: 173–180

    PubMed  CAS  Google Scholar 

  • Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25: 173–199

    PubMed  CAS  Google Scholar 

  • Downie J A (1989) The nodL gene from Rhizobium leguminosarum is homologous to the acetyl transferases encoded by iacA and cysE. Mol Microbiol 3: 1649–1651

    PubMed  CAS  Google Scholar 

  • Drobak B (1992) The plant phosphoinositide system. Biochem J 288: 697–712

    PubMed  CAS  Google Scholar 

  • Dusha I, Kondorosi A (1993) Genes at different regulatory levels are required for the ammonia control of nodulation in Rhizobium meliloti. Mol Gen Genet 240: 435–444

    PubMed  CAS  Google Scholar 

  • Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester E, Helinski DR, Ditta G (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83: 4404–4407

    Google Scholar 

  • Dylan T, Helinski DR, Ditta GS (1990a) Hypoosmotic adaptation in Rhizobium meliloti required β-(1-→2)-glucan. J Bacteriol 172: 1400–1408

    PubMed  CAS  Google Scholar 

  • Dylan T, Nagpal P, Helinski DR, Ditta GS (1990b) Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants. J Bacteriol 172: 1409–1417

    PubMed  CAS  Google Scholar 

  • Economou A, Hamilton WDO, Johnston AWB, Downier J A (1990) The Rhizobium nodulation gene nodO encodes a Ca2+-binding protein that is exported without TV-terminal cleavage and is homologous to haemolysin and related proteins. EMBO J 9: 349–354

    PubMed  CAS  Google Scholar 

  • Egelhoff TT, Long SR (1985) Rhizobium meliloti nodulation genes: identification of nodDABC gene products, purification of NodA protein, and expression of nodA in Rhizobium meliloti. J Bacteriol 164: 591–599

    PubMed  CAS  Google Scholar 

  • Ehrhardt DW, Atkinson EM, Long SR (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256: 998–1000

    PubMed  CAS  Google Scholar 

  • Estabrook EM, Sengupta-Gopalan C (1991) Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell 3: 299–308

    PubMed  CAS  Google Scholar 

  • Evans I J, Downie JA (1986) The nodI gene product of Rhizobium leguminosarum is closely related to Atp-binding bacterial transport proteins: nucleotide sequence analysis of the nodI and nodJ genes. Gene 43: 95–101

    PubMed  CAS  Google Scholar 

  • Faucher C, Camut S, Denarie J, Truchet G (1989) The nodH and nodQ host range genes of Rhizobium meliloti behave as avirulence genes in R. leguminosarum bv. viciae and determine changes in the production of plant-specific extracellular signals. Mol Plant Microbe Interact 2: 291–300

    Google Scholar 

  • Fearn JC, Larue TA (1991) A temperature-sensitive nodulation mutant (Sym-5) of Pisum sativum L. Plant Cell Environ 14: 221–227

    Google Scholar 

  • Finan TM, Hirsch AM, Leigh JA, Johnson E, Kuldau GA, Deegan S, Walker GC, Signer ER (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40: 869–877

    PubMed  CAS  Google Scholar 

  • Firmin J, Wilson K, Carlson R, Davies A, Downier J (1993) Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 10: 351–360

    PubMed  CAS  Google Scholar 

  • Fisher RF, Long SR (1992) Rhizobium-plant signal exchange. Nature 357: 655–660

    PubMed  CAS  Google Scholar 

  • Fisher RF, Egelhoff TT, Mulligan JT, Long SR (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to Dna sequences upstream of inducible nodulation genes. Genes Dev 2: 282–293

    PubMed  CAS  Google Scholar 

  • Fortin MG, Zelechowska M, Verma DPS (1985) Specific targeting of membrane nodulins to the bacteroid-enclosing compartment in soybean nodules. EMBO J 4: 3041–3046

    PubMed  CAS  Google Scholar 

  • Fortin MG, Morrison NA, Verma DPS (1987) Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15: 813–824

    PubMed  CAS  Google Scholar 

  • Fukuhara H, Minakawa Y, Akao S, Minamisawa K (1994) The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol 35: 1261–1265

    CAS  Google Scholar 

  • Geelen D, Mergaert P, Geremia RA, Goormachtig S, Van Montagu M, Holsters M (1993) Identification of nodSUIJ genes in nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification. Mol Microbiol 9: 145–154

    PubMed  CAS  Google Scholar 

  • Geremia RA, Mergaert P, Geelen D, Van Montagu M, Holsters M (1994) The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci USA 91: 2669–2673

    PubMed  CAS  Google Scholar 

  • Glazebrook J, Walker GC (1989) A novel exopolysaccharide can function in place of the caicofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56: 661–672

    PubMed  CAS  Google Scholar 

  • Goodlass G, Smith KA (1979) Effect of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51: 387–395

    CAS  Google Scholar 

  • Göttfert M (1993) Regulation and function of rhizobial nodulation genes. FEMS Microbiol Rev 104: 39–64

    Google Scholar 

  • Gottfert M, Grob P, Hennecke H (1990) Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci USA 87: 2680–2684

    PubMed  Google Scholar 

  • Grobbelaar N, Clarke B, Hough MC (1971) The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. Plant Soil Special: 215–223

    Google Scholar 

  • Hahlbrock K, Grisebach H (1979) Enzymatic control in the biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol 30: 105–130

    CAS  Google Scholar 

  • Halverson LJ, Stacey G (1986) Signal exchange in plant-microbe interactions. Microbiol Rev 50: 193–225

    PubMed  CAS  Google Scholar 

  • Hartwig UA, Phillips DA (1991) Release and modification of nod gene-inducing flavonoids from alfalfa seeds. Plant Physiol 95: 804–807

    PubMed  CAS  Google Scholar 

  • Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Effects of alfalfa nod gene inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J Bacteriol 172: 2769–2773

    PubMed  CAS  Google Scholar 

  • Hirsch A (1992) Developmental biology of legume nodulation. New Phytol 122: 211–237

    Google Scholar 

  • Hirsch A, Bhuvaneswari T, Torrey J, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86: 1244–1248

    PubMed  CAS  Google Scholar 

  • Ho SC, Schindler M, Wang JL (1990) Carbohydrate binding activities of Bradyrhizobium japonicum. 2. Isolation and characterization of a galactose-specific lectin. J Cell Biol 111: 1639–1643

    PubMed  CAS  Google Scholar 

  • Hong Z, Verma DPS (1994) A phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc Natl Acad Sci USA 91: 9617–9621

    PubMed  CAS  Google Scholar 

  • Honma MA, Ausubel FM (1987) Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene. Proc Natl Acad Sci USA 84: 8558–8562

    PubMed  CAS  Google Scholar 

  • Honma MA, Asomaning M, Ausubel FM (1990) Rhizobium meliloti nodD genes mediate host-specific activation of nodABC. J Bacteriol 172: 901–911

    PubMed  CAS  Google Scholar 

  • Horvath B, Kondorosi E, John M, Schmidt J, Torok I, Györgypal Z, Barabas I, Wieneke U, Schell J, Kondorosi A (1986) Organization, structure and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfalfa. Cell 46: 335–343

    PubMed  CAS  Google Scholar 

  • Horvath B, Bachem CW, Schell J, Kondorosi A (1987) Host-specific regulation of nodulation genes in Rhizobium is mediated by plant-signal, interacting with the nodD gene product. EMBO J 6: 841–848

    PubMed  CAS  Google Scholar 

  • Horvath B, Heidstra R, Lados M, Moerman M, Spaink HP, Promé JC, Van Kammen A, Bisseling T (1993) Lipo-oligosaecharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant J 4: 727–733

    PubMed  CAS  Google Scholar 

  • Hungría M, Joseph CM, Phillips DA (1991a) Anthocyanidins and flavonols, major nod gene inducers from seeds of a black seeded common bean (Phaseolus vulgaris L). Plant Physiol 97: 751–758

    PubMed  CAS  Google Scholar 

  • Hungría M, Joseph CM, Phillips DA (1991b) Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L). Plant Physiol 97: 759–764

    PubMed  CAS  Google Scholar 

  • Ielpi L, Dylan T, Ditta GS, Helinski DR, Stanfield SW (1990) The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of β-(l-→ 2)-glucan. J Biol Chem 265: 2843–2851

    PubMed  CAS  Google Scholar 

  • Innes R, Kuempel P, Plazinski J, Cremers H, Rolfe B, Djordjevic M (1985) Plant factors induce expression of nodulation and host-range genes in Rhizobium trifolii. Mol Gen Genet 201: 426–432

    CAS  Google Scholar 

  • Irvine R, Letcher A, Dawson R (1980) Phosphatidylinositol phosphodiesterase in higher plants. Biochem J 192: 279–283

    PubMed  CAS  Google Scholar 

  • John M, Schmidt J, Wieneke U, Kondorosi E, Schell J (1985) Expression of the nodulation gene nodC of Rhizobium meliloti in Escherichia coli: role of the nodC gene product in nodulation. EMBO J 4: 2425–2430

    PubMed  CAS  Google Scholar 

  • John M, Rohrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodD protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci USA 90: 625–629

    PubMed  CAS  Google Scholar 

  • Johnson D, Roth LE, Stacey G (1989) Immunogold localization of the NodC and NodA protein of Rhizobium meliloti. J Bacteriol 171: 2425–2430

    Google Scholar 

  • Kapulnik Y, Joseph CM, Phillips DA (1987) Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol 84: 1193–1196

    PubMed  CAS  Google Scholar 

  • Katinakis P, Verma DPS (1985) Nodulin-24 gene of soybean codes for a peptide of the peribacteroid membrane and was generated by a tandem duplication of a sequence resembling an insertion element. Proc Natl Acad Sci USA 82: 4157–4161

    PubMed  CAS  Google Scholar 

  • Kinnback A, Mellor R, Werner D (1987) α-Mannosidase II isoenzyme in the peribacteroid space of Glycine max root nodules. J Exp Bot 38: 1373–1377

    CAS  Google Scholar 

  • Kitteil BL, Helinski DR, Ditta GS (1989) Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti. J Bacterid 171: 5458–5466

    Google Scholar 

  • Klein S, Hirsch AM, Smith CS, Signer ER (1988a) Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation. Mol Plant Microbe Interact 1: 94–100

    PubMed  CAS  Google Scholar 

  • Klein S, Walker GC, Signer ER (1988b) All nod genes of Rhizobium meliloti are involved in alfalfa nodulation by exo mutants. J Bacteriol 170: 1003–1006

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Suzuki T, Fujita T, Masude M, Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA 92: 714–718

    PubMed  CAS  Google Scholar 

  • Kondorosi A, Schultze M, Savoure A, Hoffmann B, Dudits D, Pierre M, L. A, Bauer P, Kiss G, Kondorosi A (1993) Control of nodule induction and plant cell growth by Nod factors. In: Nester EW, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 143–150

    Google Scholar 

  • Kondorosi E, Pierre M, Cren M, Haumann U, Buire M, Hoffmann B, Schell J, Kondorosi A (1991) Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti. J Mol Biol 222: 885–896

    PubMed  CAS  Google Scholar 

  • Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci USA 84: 7428–7432

    PubMed  CAS  Google Scholar 

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Mowa NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585–596

    PubMed  CAS  Google Scholar 

  • Lawson C, Djordjevic M, Weinman J, Rolfe B (1994) Rhizobium inoculation and physical wounding result in the rapid induction of the same chalcone synthase copy in Trifolium subterraneum. Mol Plant Microbe Interact 7: 498–507

    CAS  Google Scholar 

  • Leigh JA, Coplin DL (1992) Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol 46: 307–346

    PubMed  CAS  Google Scholar 

  • Leigh JA, Walker GC (1994) Exopoly saccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet 10: 63–67

    PubMed  CAS  Google Scholar 

  • Leigh JA, Signer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82: 6231–6235

    PubMed  CAS  Google Scholar 

  • Leigh JA, Reed JW, Hanks JF, Hirsch AM, Walker GC (1987) Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell 51: 579–587

    PubMed  CAS  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784

    PubMed  CAS  Google Scholar 

  • Libbenga KR, Van Iren F, Bogers RJ, Schraag-Lamers MF (1973) The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta 114: 29–39

    CAS  Google Scholar 

  • Ligero F, Caba JM, Lluch C, Olivares J (1991) Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxylglycine. Plant Physiol 97: 1221–1225

    PubMed  CAS  Google Scholar 

  • Long S (1992) Genetic analysis of Rhizobium nodulation. In: Stacey G, Burns R, Evans H (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 560–597

    Google Scholar 

  • Manen JF, Simon P, Vanslooten JC, Osteras M, Frutiger S, Hughes GJ (1991) A nodulin specifically expressed in senescent nodules of winged bean is a protease inhibitor. Plant Cell 3: 259–270

    PubMed  CAS  Google Scholar 

  • Marie C, Barny MA, Downie JA (1992) Rhizobium leguminosarum has two glucosamine synthases, glmS and nodM, required for nodulation and development of nitrogen-fixing nodules. Mol Microbiol 6: 843–851

    PubMed  CAS  Google Scholar 

  • Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) A ehaleone and 2 related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol 91: 842–847

    PubMed  CAS  Google Scholar 

  • Miao GH, Hong Z, Verma DPS (1992) Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane. J Cell Biol 118: 481–490

    PubMed  CAS  Google Scholar 

  • Morrison N, Verma DPS (1987) A block in the endocytosis of Rhizobium allows cellular differentiation in nodules but affects the expression of some peribacteroid membrane nodulins. Plant Mol Biol 9: 185–196

    CAS  Google Scholar 

  • Mulligan J, Long S (1985) Induction of Rhizobium meliloti nodC expression by plant exudates requires nodD. Proc Natl Acad Sci USA 82: 1–5

    Google Scholar 

  • Noel KD (1992) Rhizobial polysaccharides required in symbioses with legumes. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press, Boca Raton, pp 341–357

    Google Scholar 

  • Noel KD, Vandenosch KA, Kalpaca B (1986) Mutations in Rhizobium phaseoli that lead to arrested development of infection threads. J Bacteriol 168: 1392–1401

    PubMed  CAS  Google Scholar 

  • OO’Connell KP, Araujo RS, Handelsman J (1990) Exopolysaccharide-deficient mutants of Rhizobium sp. strain CIAT899 induce chlorosis in common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 3: 424–428

    Google Scholar 

  • Orgambide GG, Philip-Hollingsworth S, Hollingsworth RI, Dazzo FB (1994) Flavone-enhanced accumulation and symbiosis-related biological activity of a diglycosyl diacylglycerol membrane glycolipid from Rhizobium leguminosarum biovar trifolii. J Bacteriol 176: 4338–4347

    PubMed  CAS  Google Scholar 

  • Perotto S, Brewin NJ, Kannenberg EL (1994) Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaceharide-defective mutants of Rhizobium leguminosarum strain 3841. Mol Plant Microbe Interact 7: 99–112

    CAS  Google Scholar 

  • Peters N, Frost J, Long S (1986) A plant flavone luteloin induces expression of Rhizobium meliloti nodulation genes. Science 233: 977–980

    PubMed  CAS  Google Scholar 

  • Peters NK, Crist-Estes DK (1989) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 91: 690–693

    PubMed  CAS  Google Scholar 

  • Petrovics G, Putnoky P, Reuhs B, Kim J, Thorp TA, Noel KD, Carlson RW, Kondorosi A (1993) The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development. Mol Microbiol 8: 1083–1094

    PubMed  CAS  Google Scholar 

  • Philip-Hollingsworth S, Hollingswoth RI, Dazzo FB (1991) N-acetylglutamic acid: an extracellular nod signal of Rhizobium trifolii ANU843 that induces root hair branching and nodulelike primordia in white clover roots. J Biol Chem 266: 16854–16858

    PubMed  CAS  Google Scholar 

  • Phillips DA, Torrey JG (1971) Studies on cytokinin production by Rhizobium. Plant Physiol 49: 11–15

    Google Scholar 

  • Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99: 1526–1531

    PubMed  CAS  Google Scholar 

  • Priefer UB (1989) Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae Vf39. J Bacteriol 171: 6161–6168

    PubMed  CAS  Google Scholar 

  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, Degreef J, Schell J, Vanonckelen H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. Ind J Exp Biol 29: 184–186

    Google Scholar 

  • Recourt K, van Brussel AAN, Driessen AJM, Lugtenberg BJJ (1989) Accumulation of a nod gene inducer, the flavonoid narigenin, in the cytoplasmic membrane of Rhizobium leguminosarum biovar viciae is caused by the pH-dependent hydrophobicity of naringenin. J Bacteriol 171: 4370–4377

    PubMed  CAS  Google Scholar 

  • Recourt K, Schripsema J, Kijne J, van Brussel A, Lugtenberg B (1991) Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol Biol 16: 841–852

    PubMed  CAS  Google Scholar 

  • Relic B, Perret X, Estrada-Garcia MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994) Nod-factors of Rhizobium are a key to the legume door. Mol Microbiol 13: 171–178

    PubMed  CAS  Google Scholar 

  • Reuhs B, Kim J, Badgett A, Carlson R (1994) Production of cell-associated polysaccharides of Rhizobium fresii USDA205 is modulated by apigenin and host root extract. Mol Plant Microbe Interact 7: 240–247

    PubMed  CAS  Google Scholar 

  • Robertson J, Lyttleton P (1982) Coated and smooth vesicles in the biogenesis of cell walls plasma membranes infection threads and peribacteroid membranes in root hairs and nodules of white clover. J Cell Sci 58: 63–78

    PubMed  CAS  Google Scholar 

  • Rocher P, Debelle F, Maillet F, Lerouge P, Faucher C, Trachet G, Dénarié J, Promé JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti—nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67: 1131–1143

    Google Scholar 

  • Rohrig H, Schmidt J, Wieneke U, Kondorosi E, Barlier I, Schell J, John M (1994) Biosynthesis of lipooligosaccharide nodulation factors: Rhizobium NodA protein is involved in TV-acylation of the chitooligosaccharide backbone. Proc Natl Acad Sci USA 91: 3122–3126

    PubMed  CAS  Google Scholar 

  • Rossen L, Shearman C, Johnston A, Downie J (1985) The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodABC genes. EMBO J 4: 3369–3373

    PubMed  CAS  Google Scholar 

  • Roth L, Stacey G (1989) Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Brady rhizobium japonicum mutant strains. Eur J Cell Biol 49: 24–32

    PubMed  CAS  Google Scholar 

  • Sadowsky M, Olson E, Foster V, Kosslak R, Verma DPS (1988) Two host-inducible genes of Rhizobium fredii and characterization of the inducing compound. J Bacteriol 170: 171–178

    PubMed  CAS  Google Scholar 

  • Sanjuan J, Grop P, Göttfert M, Hennecke H, Stacey G (1994) NodW is essential for Ml expression of the common nodulation genes in Bradyrhizobium japonicum. Mol Plant Microbe Interact 7: 364–369

    CAS  Google Scholar 

  • Savoure A, Magyar Z, Pierre M, Brown S, Schultze M, Dudits D, Kondorosi A, Kondorosi E (1994) Activation of the cell machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. EMBO J 13: 1093–1102

    PubMed  CAS  Google Scholar 

  • Scheres B, McKhann HI, Zalensky A, Lobler M, Bisseling T, Hirsch AM (1992) The PsENOD12 gene is expressed at two different sites in Afghanistan pea pseudonodules induced by auxin transport inhibitors. Plant Physiol 100: 1649–1655

    PubMed  CAS  Google Scholar 

  • Scheu A, Economou A, Hong G, Ghelani S, Johnston A, Downie J A (1992) Secretion of the Rhizobium leguminosarum nodulation protein NodO by haemolysin-type systems. Mol Microbiol 6: 231–238

    PubMed  CAS  Google Scholar 

  • Schlaman HR, Spaink HP, Okker RJ, Lugtenberg BJ (1989) Subcellular localization of the nodD gene product in Rhizobium leguminosarum. J Bacteriol 171: 4686–4693

    PubMed  CAS  Google Scholar 

  • Schlaman HRM, Okker RJH, Lugtenberg BJJ (1990) Subcellular localization of the Rhizobium leguminosarum nodi gene product. J Bacteriol 172: 5486–5489

    PubMed  CAS  Google Scholar 

  • Schmidt J, John M, Wieneke U, Krussmann H-D, Schell J (1986) Expression of the nodulation gene nodA in Rhizobium meliloti and localization of the gene product in the cytosol. Proc Natl Acad Sci USA 83: 9581–9585

    PubMed  CAS  Google Scholar 

  • Schmidt J, Wingender R, John M, Wieneke U, Schell J (1988) Rhizobium meliloti nodA and nodB genes are involved in generating compounds that stimulate mitosis of plant cells. Proc Natl Acad Sci USA 85: 8575–8582

    Google Scholar 

  • Schmidt J, Röhrig H, John M, Wieneke U, Stacey G, Koncz C, Schell J (1993) Alteration of plant growth and development by Rhizobium nodA and nodB genes involved in the synthesis of oligosaccharide signal molecules. Plant J 4: 651–658

    CAS  Google Scholar 

  • Schmidt PE, Broughton WJ, Werner D (1994) Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Mol Plant Microbe Interact 7: 384–390

    CAS  Google Scholar 

  • Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260: 88–91

    PubMed  CAS  Google Scholar 

  • Schwedock J, Long SR (1990) Atp sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature 348: 644–647

    PubMed  CAS  Google Scholar 

  • Sheaman CA, Rossen I, Johnson AWB, Downie JA (1986) The Rhizobium legummas arum nodulation gene nodF encodes a polypeptide similar to acyl carrier protein and is regulated by nodD plus a factor in pea root exudate. EMBO J 5: 647–652

    Google Scholar 

  • Smit G, Puvanesrajah V, Carlson RW, Babour WM, Stacey G (1992) Bradyrhizobium japonicum nodDl can be specifically induced by soybean flavonoids that do not induce the nosYABCSUIJ operon. J Biol Chem 267: 310–318

    CAS  Google Scholar 

  • Spaink HP, Sheeley DM, van Brussel AAN, Glushka J, York VN, Lugtenberg BJJ (1991) A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354: 125–129

    PubMed  CAS  Google Scholar 

  • Spaink HP, Wijffelman CA, Pees E, Okker RJH, Lugtenberg BJJ (1989) Localization of functional regions of the Rhizobium nodD product using hybrid nodD genes. Plant Mol Biol 12: 59–73

    CAS  Google Scholar 

  • Stacey G, Luka S, Sanjuan J, Banfalvi Z, Niewkoop AJ, Chun JY, Forsberg LS, Carlson R (1994) nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol 176: 620–633

    PubMed  CAS  Google Scholar 

  • Staehelin C, Granado J, MMüllerller J, Wiemken A, Mellor RB, Felix G, Regenass M, Broughton WJ, Boiler T (1994a) Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proc Natl Acad Sci USA 91: 2196–2200

    PubMed  CAS  Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E, Mellor RB, Boiler T, Kondorosi A (1994b) Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant J 5: 319–330

    CAS  Google Scholar 

  • Stanfield SW, Ielpi L, O’Brochta D, Helinski DR, Ditta GS (1988) The ndvA gene product of Rhizobium meliloti is required for (3-(l —> 2) glucan production and has homology to the atp-binding export protein HlyB. J Bacteriol 170: 3523–3530

    PubMed  CAS  Google Scholar 

  • Stephens L, Smrcka A, Cooke F, Jackson T, Sternweis, Hawkins P (1994) A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγsubunits. Cell 77: 83–93

    PubMed  CAS  Google Scholar 

  • Stokkermans TJW, Peters NK (1994) Bradyrhizobium elkanii lipo-oligosaccharide signals induce complete nodule structures on Glycine soja. Planta 193: 413–420

    Google Scholar 

  • Sturtevant D, Taller B (1989) Cytokinin production by Bradyrhizobium japonicum. Plant Physiol 89: 1247–1252

    PubMed  CAS  Google Scholar 

  • Surin BP, Downie JA (1988) Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host specific nodulation. Mol Microbiol 2: 173–183

    PubMed  CAS  Google Scholar 

  • Surin BP, Watson JM, Hamilton WDO, Economou A, Downie JA (1990) Molecular characterization of the nodulation gene, nodT, from 2 biovars of Rhizobium leguminosarum. Mol Microbiol 4: 245–252

    PubMed  CAS  Google Scholar 

  • Sutton J, Lea E, Downie J (1994) The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proc Natl Acad Sci USA 91: 9990–9994

    PubMed  CAS  Google Scholar 

  • Taller BJ, Sturtevant DB (1991) Cytokinin production by rhizobia. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 215–221

    Google Scholar 

  • Thimann KV (1936) On the physiology of the formation of nodules on legume roots. Proc Natl AcadSci USA 22:511–514

    PubMed  CAS  Google Scholar 

  • Truchet G, Barker DG, Camut S, Debilly F, Vasse J, Huguet T (1989) Alfalfa nodulation in the absence of Rhizobium. Mol Gen Genet 219: 65–68

    CAS  Google Scholar 

  • Valius M, Kazlauskas A (1993) Phospholipase C-γ 1 and phosphatidylinositol 3 kinase are the downstream mediators of the pdgf receptor’s mitogenic signal. Cell 73: 321–334

    PubMed  CAS  Google Scholar 

  • Van Brussel AAN, Recourt K, Pees E, Spaink HP, Tak T, Wijffelman CA, Kijm JW, Lugtenberg BJJ (1990) A biovar-specific signal of Rhizobium leguminosarum bv viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. nigra. J Bacteriol 172: 5394–5401

    PubMed  Google Scholar 

  • Van Der Meer I, Stuitje A, Mol J (1993) Regulation of general phenylpropanoid and flavonoid gene expression. In: Verma DPS (ed) Control of plant gene expression. CRC Press, Boca Raton, pp 125–155

    Google Scholar 

  • Vanrhijn PJS, Feys B, Verreth C, Vanderleyden J (1993) Multiple copies of nodD in Rhizobium tropici CIAT899 and BR816. J Bacteriol 175: 438–447

    CAS  Google Scholar 

  • Vazquez M, Santana O, Quinto C (1993) The Nodi and NodJ proteins from Rhizobium and Brady rhizobium strains are similar to capsular polysaccharide secretion proteins from Gram-negative bacteria. Mol Microbiol 8: 369–377

    PubMed  CAS  Google Scholar 

  • Verma DPS (1990) Endosymbiosis of Rhizobium: internalization of the “extracellular compartment” and metabolite exchange. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 235–237

    Google Scholar 

  • Verma DPS (1992) Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 4: 373–382

    PubMed  CAS  Google Scholar 

  • Verma DPS, Nadler K (1984) Legume-Rhizobium symbiosis: host’s point of view. In: Verma DPS, Hohn T (eds) Genes involved in microbe-plant interactions. Springer, Wien New York, pp 57–93 [Dennis ES et al (eds) Plant gene research. Basic knowledge and application]

    Google Scholar 

  • Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315: 239–242

    PubMed  CAS  Google Scholar 

  • Whitman M, Downes PC, Keeler M, Keller T, Cantley L (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332: 644–646

    PubMed  CAS  Google Scholar 

  • Wood EA, Butcher GW, Brewin NJ, Kannenberg EL (1980) Genetic derepression of a developmentally regulated lipopolysaccharide antigen from Rhizobium leguminosarum 3841. J Bacteriol 171: 4545–4555

    Google Scholar 

  • Xu P, Lloyd CW, Staiger CJ, Drobak BK (1992) Association of phosphotidylinositol 4-kinase with the plant cytoskeleton. Plant Cell 4: 941–951

    PubMed  CAS  Google Scholar 

  • Yotsushima K, Nakamura K, Mitsui T, Igaue I (1992) Purification and characterization of phosphatidylinositol-specific phospholipase C in suspension-cultured cells of rice (Oriza sativa L.). Biosci Biotech Biochem 56: 1247–1251

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hong, Z., Verma, D.P.S. (1996). Ex-Planta and In-Planta Signals in Legume-Rhizobium Interaction. In: Verma, D.P.S. (eds) Signal Transduction in Plant Growth and Development. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7474-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7474-6_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7476-0

  • Online ISBN: 978-3-7091-7474-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics