Skip to main content

Role of Plasmodesmata and Virus Movement Proteins in Spread of Plant Viruses

  • Chapter
Signal Transduction in Plant Growth and Development

Part of the book series: Plant Gene Research ((GENE))

Abstract

In higher plants the direct cytoplasm to cytoplasm intercellular movement of water, nutrients, small signaling molecules, and, in certain cases, of macromolecules is via plasmodesmata (singular plasmodesma), highly specialized gatable cytoplasmic trans-wall channels that interconnect contiguous cells. In addition to their normal function, plasmodesmata are apparently exploited by plant viruses in order to spread from cell to cell. Since the cell wall which encases the plant protoplast constitutes an impermeable barrier, plant viruses have developed strategies which allow them to exploit the natural channels connecting contiguous cells, the plasmodesmata, as conduits for cell-to-cell spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht J, Geldreich A, de Murcia JM, Kirchherr D, Mesnard J-M, Lebeurier G (1988) Cauliflower mosaic virus gene I product detected in a cell-wall-enriched fraction. Virology 163: 503–508

    PubMed  CAS  Google Scholar 

  • Allison R, Thompson C, Ahlquist P (1990) Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proc Natl Acad Sci USA 87: 1820–1824

    PubMed  CAS  Google Scholar 

  • Atabekov JG, Dorokhov YL (1984) Plant virus-specific transport function and resistance of plants to viruses. Adv Virus Res 29: 313–364

    PubMed  CAS  Google Scholar 

  • Atabekov JG, Taliansky ME (1990) Expression of a plant virus-coded transport function by different viral genomes. Adv Virus Res 38: 201–248

    PubMed  CAS  Google Scholar 

  • Atkins D, Hull R, Wells B, Riberts K, Moore P, Beachy RN (1991a) The tobacco mosaic virus 30K movement protein in transgenic tobacco plants is localized to plasmodesmata. J Gen Virol 72:209–211

    PubMed  CAS  Google Scholar 

  • Atkins D, Roberts K, Hull R, Prehaud C, Bishop DHL (1991b) Expression of the tobacco mosaic virus movement protein using a baculovirus expression vector. J Gen Virol 72: 2831–2835

    PubMed  CAS  Google Scholar 

  • Barker H (1987) Invasion of non-phloem tissue in Nicotiana clevelandii by potato leafroll luteovirus is enhanced in plants also infected with potato Y potyvirus. J Gen Virol 68: 1223–1227

    Google Scholar 

  • Baron-Epel O, Hernandez D, Jiang LW, Meiners S, Schindler M (1988) Dynamic continuity of cytoplasmic and membrane compartments between plant cells. J Cell Biol 106: 715–721

    PubMed  CAS  Google Scholar 

  • Beck DL, Guilford PJ, Voot DM, Andersen MT, Forster RLS (1991) Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183: 695–702

    PubMed  CAS  Google Scholar 

  • Berna A, Gafny R, Wolf S, Lucas WJ, Holt CA, Beachy RN (1991) The TMV movement protein: role of the C-terminal 73 amino acids in subcellular localization and function. Virology 182: 682–689

    PubMed  CAS  Google Scholar 

  • Bol JF, van Vloten-Doting L, Jaspars EMJ (1971) A functional equivalence of top component a RNA and coat protein in the initiation of infection by alfalfa mosaic virus. Virology 46: 73–85

    PubMed  CAS  Google Scholar 

  • Bostwick DE, Dannenhoffer JM, Skaggs MI, Lister RM, Larkin BA, Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4: 1539–1548

    PubMed  CAS  Google Scholar 

  • Botha CEJ, Hartley BJ, Cross RHM (1993) The ultra structure and computer-enhanced digital image analysis of plasmodesmata at the Kranz mesophyll-bundle sheath interface of Thermeda triandra var. imberbis (Retz) A. Camus in conventionally-fixed leaf blades. Ann Bot 72: 255–261

    Google Scholar 

  • Carr RJ, Kim KS (1983 Evidence that bean golden mosaic virus invades non-phloem tissue indouble infections with tobacco mosaic virus. J Gen Virol 64: 2489–2492

    Google Scholar 

  • Cheo PC (1970) Subliminal infection of cotton by tobacco mosaic virus. Phytopathology 60: 41–46

    Google Scholar 

  • Cheo PC, Gerard JS (1971) Differences in virus-replicating capacity among plant species inoculated with tobacco-mosaic virus. Phytopathology 61: 1010–1012

    Google Scholar 

  • Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60: 637–647

    PubMed  CAS  Google Scholar 

  • Citovsky V, Wong ML, Shaw AL, Venkataram PBV, Zambryski P (1992) Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4: 397–411.

    PubMed  CAS  Google Scholar 

  • Citovsky V, McLean BJ, Zupan JR, Zambryski P (1993) Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev 7: 904–910

    PubMed  CAS  Google Scholar 

  • Cleland RE, Fujiwara T, Lucas WJ (1994) Plasmodesmatal-mediated cell-to-cell transport in wheat roots is modulated by anerobic stress. Protoplasma 178: 81–85

    PubMed  CAS  Google Scholar 

  • Cooper B, Lapidot M, Heick JA, Dodds JA, Beachy RN (1995) Multivirus resistance in transgenic tobacco plants expressing a dysfunctional movement protein of tobacco mosaic virus. Virology 206: 307–313

    PubMed  CAS  Google Scholar 

  • Cote R, Thain JF, Fensom DS (1987) Increase in electrical resistance of plasmodesmata of Chara induced by an applied pressure gradient across nodes. Can J Bot 40: 509–511

    Google Scholar 

  • Dalmay T, Rubino L, Burgyan J, Kollar A, Russo M (1993) Functional analysis of cymbidium ringspot virus genome. Virology 194: 697–704

    PubMed  CAS  Google Scholar 

  • Davies C, Hills G, Baulcombe DC (1993) Sub-cellular localization of the 25-kDa protein0 encoded in the triple gene block of potato virus X. Virology 197: 166–175

    PubMed  CAS  Google Scholar 

  • Dawson WO, Hilf ME (1992) Host range determinants of plant viruses. Annu Rev Plant Physiol Plant Mol Biol 43: 527–555

    CAS  Google Scholar 

  • Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237: 389–394

    PubMed  CAS  Google Scholar 

  • Deom CM, Schubert KR, Wolf S, Holt CA, Lucas WJ, Beachy RN (1990) Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc Natl Acad Sci USA 87: 3284–3288

    PubMed  CAS  Google Scholar 

  • Derrick PM, Barker H, Oparka KJ (1992) Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4: 1450–1412

    Google Scholar 

  • Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992a) Secondary plasmo-desmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4: 915–928

    PubMed  CAS  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1992b) Substructure of freeze-substituted plasmodes-mata. Protoplasma 169: 28–41

    Google Scholar 

  • Dodds A, Hamilton R (1972) The influence of barley stripe mosaic virus on the replication of tobacco mosaic virus in Hordeum vulgare L. Virology 50: 404–411

    Google Scholar 

  • Dore JM, van Dun CMP, Pinck L, Bol JF (1991) Alfalfa mosaic virus RNA3 mutants do not replicate in transgenic plants expressing RNA3 specific genes. J Gen Virol 72: 253–258

    PubMed  CAS  Google Scholar 

  • Epel BL (1994) Plasmodesmata—composition, structure and trafficking. Plant Mol Biol 26: 1343–1356

    PubMed  CAS  Google Scholar 

  • Epel BL, Erlanger M (1991) Light regulates symplasmic communication in etiolated corn seedlings. Physiol Plant 83: 149–153

    CAS  Google Scholar 

  • Epel B, Kuchuck B, Kotlizky G, Shurtz S, Erlanger M, Yahalom A (1995) Isolation and characterization of plasmodesmata. In: Galbraith DW, Bourque EP, Bohnert HJ (eds) Methods in cell biology, methods in plant cell biology, part B. Academic Press, San Diego, pp 237–253

    Google Scholar 

  • Erny C, Schoumacher F, Godefroy-Colburn T, Stussi-Garaud C (1992) Nucleic acid binding properties of the 92-kDa replicase subunit of alfalfa mosaic virus produced in yeast. Eur J Biochem 203: 167–172

    PubMed  CAS  Google Scholar 

  • Erwee MG, Goodwin PB (1983) Characterization of Egeria densa Planch leaf symplast. Inhibition of intercellular movement of fluorescent probes by group II ions. Planta 158: 320–328

    CAS  Google Scholar 

  • Fenczik C (1994) Characterization of two tobamovirus movement proteins and their role in host range determination. PhD thesis, Washington University, St. Louis, MO

    Google Scholar 

  • Fenczik C, Padgett H, Holt C, Casper S, Beachy R (1995) Mutational analysis of the movement protein of odontoglossum ringspot virus to identify a host-range determinant. Mol Plant Microbe Interact 8: 666–673

    PubMed  CAS  Google Scholar 

  • Fisher DB, Wu Y, Ku MSB (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100: 1433–1441

    PubMed  CAS  Google Scholar 

  • Francki RIB, Milne RG, Hatta T (1985) Atlas of plant viruses. CRC Press, Boca Raton

    Google Scholar 

  • Fujiwara T, Giesmann-Cookmeyer D, Ding B, Lommell SA, Lucas WJ (1993) Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 5: 1783–1794

    PubMed  CAS  Google Scholar 

  • Gafny R, Lapidot M, Berna A, Holt CA, Deom CM, Beachy RN (1992) Effects of terminal deletion mutations on function of the movement protein of tobacco mosaic virus. Virology 187: 499–507

    PubMed  CAS  Google Scholar 

  • Gardiner W, Sunter G, Brand L, Elmer JS, Rogers SJ, Bisaro DM (1988) Genetic analysis of tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO J 7: 899–904

    PubMed  CAS  Google Scholar 

  • Giesman-Cookmeyer D, Lommel SA (1993) Alanine scanning mutagenesis of a plant virus movement protein identifies three functional domains. Plant Cell 5: 973–982

    PubMed  CAS  Google Scholar 

  • Gilmer D, Bouzoubaa S, Hehn A, Guilley H, Richards K, Jonard G (1992) Efficient cell-to-cell movement of beet necrotic yellow vein virus requires 3’ proximal genes located on RNA2. Virology 189: 40–47

    PubMed  CAS  Google Scholar 

  • Godefroy-Colburn T, Schoumacher F, Erny C, Berna A, Moser O, Gagey MJ, Stussi-Garaud C (1986) A non-structural protein of alfalfa mosaic virus in the walls of infected tobacco cells. J Gen Virol 67: 2233–2239

    CAS  Google Scholar 

  • Godefroy-Colburn T, Schoumacher F, Erny C, Berna A, Moser O, Gagey MJ, Stussi-Garaud C (1990) The movement protein of some plant viruses. In: Fräser RSS (ed) Recognition and response in plant-virus interactions. Springer, Berlin Heidelberg New York Tokyo, pp 207–231 (NATO-ASI series, series H, vol 41)

    Google Scholar 

  • Goodwin PB (1983) Molecular size limit for movement in the symplast of Elodea leaf. Planta 157: 124–130

    CAS  Google Scholar 

  • Grama DP, Mayor IY (1990) Construction of a model of potexvirus coat proteins. Mikrobiol Zh 52: 59–66

    PubMed  CAS  Google Scholar 

  • Graski S, de Feijter AW, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5: 25–38

    Google Scholar 

  • Hacker DL, Petty ITD, Wei N, Morris TJ (1992) Turnip crinkle virus genes required for RNA replication and virus movement. Virology 186: 1–8

    PubMed  CAS  Google Scholar 

  • Harrison BD, Robinson DJ (1986) Tobraviruses. In: Van Regenmortel MHV, Fraenkel-Conrat H (eds) The plant viruses, vol 2. Plenum, New York, pp 339–369

    Google Scholar 

  • Harrison BD, Barker H, Derrick PM (1990) Intercellular spread of PLRV: effects of co-infection and plant resistance. In: Fraser RSS (ed) Recognition and response in plant-virus interactions. Springer, Berlin Heidelberg New York Tokyo, pp 405–414 (NATO-ASI series, series H, vol 41)

    Google Scholar 

  • Hayes PJ, Petty ITD, Coutts RHA, Buck KW (1988) Gene amplification and expression in plants by a replicating geminivirus vector. Nature 334: 179–182

    CAS  Google Scholar 

  • Heaton LA, Carrington JC, Morris TJ (1989) Turnip crinkle virus infection from RNA synthesized in vitro. Virology 170: 214–218

    PubMed  CAS  Google Scholar 

  • Hepler PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111: 121–133

    Google Scholar 

  • Hepler PK, Palevitz BA, Lancelle SA, McCauley MM, Lichtscheidl (1990) Cortical endoplasmic reticulum in plants. J Cell Biol 96: 355–373

    CAS  Google Scholar 

  • Hilf ME, Dawson WO (1993) The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement. Virology 193: 106–114

    PubMed  CAS  Google Scholar 

  • Holt CA, Beachy RN (1989) Accumulation of potato leafroll luteovirus is enhanced in transgenic tobacco plants expressing the 30 kDa movement protein of tobacco mosaic virus. Presented at the Symposium on Viral Genes and Plant Pathogenesis, Lexington, KY, October 16–17, 1989

    Google Scholar 

  • Holt CA, Beachy RN (1991) In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 181: 109–117

    PubMed  CAS  Google Scholar 

  • Holt C, Fenczik C, Casper S, Beachy R (1995) The carboxy-terminal region of the tobamovirus movement protein encodes a host-range determinant. Virology (in press)

    Google Scholar 

  • Hull R (1989) The movement of viruses in plants. Annu Rev Phytopathol 27: 231–240

    Google Scholar 

  • Hunte C, Schnabl H, Traub O, Willecke K, Schulz M (1992) Immunological evidence of con-nexinlike proteins in the plasma membrane of Viciafaba L. Bot Acta 105: 104–110

    CAS  Google Scholar 

  • Hunte C, Janssen M, Schulz M, Traub O, Willecke K, Schnabl H (1993) Age-dependent modification and further localization of the cx 26-like protein from Vicia faba L. Bot Acta 106: 207–212

    CAS  Google Scholar 

  • Ingham D, Lazarowitz S (1993) A single mis sense mutation in the BRI movement protein alters the host range of squash leaf curl virus. Virology 196: 694–702

    PubMed  CAS  Google Scholar 

  • Kim KS, Lee KW (1992) Gemini virus-induced macrotubules and their suggested role in cell-to-cell movement. Phytophathology 82: 664–669

    Google Scholar 

  • Kotlizky G, Shurtz S, Yahalom A, Malik Z, Traub O, Epel BL (1992) Isolation and characterization of plasmodesmata embedded in clean maize cell walls. Plant J 2: 623–630

    Google Scholar 

  • Kwon S, Sako N, Oshima K (1994) Nucleotide sequence of the coat protein and the 30K genes of TMV-Rakkyo strain locally infecting Nicotiana tabacum L. cv. Bright Yellow. Ann Phytopathol Soc Japan 60: 186–195

    CAS  Google Scholar 

  • Lapidot M, Gafny R, Ding B, Wolf S, Lucas WJ, Beachy RN (1993) A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant 2: 959–970

    Google Scholar 

  • Leisner SM, Turgeon R (1993) Movement of virus and photoassimilate in the phloem: a comparative analysis. Bioessays 15: 741–748

    PubMed  CAS  Google Scholar 

  • Leonard D, Zaitlin M (1982) A temperature-sensitive strain of tobacco mosaic virus defective in cell-to-cell movement generates an altered viral-coded protein. Virology 117: 416–424

    PubMed  CAS  Google Scholar 

  • Li RQ, Zhang WC (1994) Three dimensional electron microscopy visualization of the cyto-skeleton of integument cells and nuclear epidermis of Triticum aestivum. Chin J Bot 6: 118–122

    Google Scholar 

  • Linstead PJ, Hills GJ, Plaskitt KA, Wilson IG, Harker CL, Maule AJ (1988) The subcellular location of the gene 1 product of cauliflower mosaic virus is consistent with a function associated with virus spread. J Gen Virol 69: 1809–1818

    CAS  Google Scholar 

  • Lucas WJ, Ding B, Van der Schoot C (1993) Plasmodesmata and the supracellular nature of plants. New Phytol 125: 435–476

    Google Scholar 

  • Malyshenko SI, Kondakova OA, Nazarova JV, Kaplan IB, Taliansky ME, Atabekov JG (1993) Reduction of tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins. J Gen Virol 74: 1149–1156

    PubMed  CAS  Google Scholar 

  • Malyshenko SI, Lapchic LG, Kondakova OA, Kiznetzova LL, Taliansky ME, Atabekov JG (1988b) Red clover mottle comovirus B-RNA spreads between cells in tobamovirus-infected tissues. J Gen Virol 69: 407–412

    CAS  Google Scholar 

  • Maule AJ (1991) Virus movement in infected plants. Crit Rev Plant Sci 9: 457–473

    CAS  Google Scholar 

  • Meiners S, Schindler M (1987) Immunological evidence for gap junction polypeptide in plant cells. J Biol Chem 262: 951–953

    PubMed  CAS  Google Scholar 

  • Meiners S, Schindler M (1989) Characterization of a connexin homologue in cultured soybean cells and diverse plant organs. Planta 179: 148–155

    CAS  Google Scholar 

  • Meiners S, Baron-Epel O, Schindler M (1988) Intercellular communication—filling in the gaps. Plant Physiol 88: 791–793

    Google Scholar 

  • Meiners S, Xu A, Schindler M (1991) Gap junction protein homologue from Arabidopsis thaliana: evidence for connexins in plants. Proc Natl Acad Sci USA 88: 4119–4122

    PubMed  CAS  Google Scholar 

  • Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6: 2557–2563

    PubMed  CAS  Google Scholar 

  • Meshi T, Motoyoshi F, Maeda F, Yoshiwoka S, Watanabe H, Okada Y (1989) Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. Plant Cell 1: 515–522

    PubMed  CAS  Google Scholar 

  • Meshi T, Hosokawa D, Kawagishi M, Watanabe Y, Okada Y (1992) Reinvestigation of intracellular localization of the 30K protein in tobacco protoplasts infected with tobacco mosaic virus RNA. Virology 187: 809–813

    PubMed  CAS  Google Scholar 

  • Mise K, Allison RF, Janda M, Ahlquist P (1993) Bromovirus movement protein genes play a crucial role in host specificity. J Virol 67: 2815–2823

    PubMed  CAS  Google Scholar 

  • Monzer J, Kloth S (1991) The preparation of plasmodesmata from plant tissue homogenates: access to the biochemical characterization of plasmodesmata-related polypeptides. Bot Acta 104: 82–84

    CAS  Google Scholar 

  • Moore PJ, Fenczik CA, Beachy RN (1992) Developmental changes in plasmodesmata in transgenic plants expressing the movement protein of tobacco mosaic virus. Protoplasma 170: 115–127

    Google Scholar 

  • Morales F, Niessen A, Ramirez B, Castano M (1990) Isolation and partial characterization of a geminivirus causing bean dwarf mosaic. Phytopathology 80: 96–101

    Google Scholar 

  • Moser O, Gagey MJ, Godefroy-Colburn T, Stussi-Garaud C, Ellwart-Tschurtz M, Nitschko H, Mundry K-W (1988) The fate of the transport protein of tobacco mosaic virus in systemic and hypersensitive hosts. J Gen Virol 69: 1367–1373

    CAS  Google Scholar 

  • Motoyoshi F, Oshima N (1977) Expression of genetically controlled resistance to tobacco mosaic virus infection in isolated tomato leaf protoplasts. J Gen Virol 34: 499–506

    Google Scholar 

  • Neisbach-Klosgen U, Guilley H, Jonard G, Richards K (1990) Immuno-detection in vivo of beet necrotic yellow vein virus encoded proteins. Virology 178: 52–61

    Google Scholar 

  • Nejidat A, Cellier F, Holt CA, Gafny R, Eggenberger A, Beachy RN (1991) Transfer of the movement protein gene between two tobamoviruses: influence on local lesion development. Virology 180: 318–26

    PubMed  CAS  Google Scholar 

  • Nishiguchi M, Motoyoshi F, Oshima N (1978) Behavior of a temperature sensitive strain of tobacco mosaic virus in tomato leaves and protoplasts. J Gen Virol 39: 53–61

    Google Scholar 

  • Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76: 925–932

    PubMed  CAS  Google Scholar 

  • Ohno T, Takamatsu N, Meshi T, Okada Y, Nishiguchi M, Kiho Y (1983) Single amino acid substitution in 30K protein of TMV defective in virus transport function. Virology 131: 255–258

    PubMed  CAS  Google Scholar 

  • Olensen P (1979) The neck constriction in plasmodesmata: evidence for a peripheral sphincterlike structure revealed by fixation and tannic acid. Planta 144: 349–358

    Google Scholar 

  • Oparka KJ (1993) Signalling via plasmodesmata—the neglected pathway. Sem Cell Biol 4: 131–138

    CAS  Google Scholar 

  • Oparka KJ, Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2: 741–750

    Google Scholar 

  • Osman TA, Buck KW (1991) Detection of the movement protein of red clover necrotic mosaic virus in a cell wall fraction from infected Nicotiana clevelandii plants. J Gen Virol 72: 2853–2856

    PubMed  CAS  Google Scholar 

  • Osman TAM, Hayes RJ, Buck KW (1992) Cooperative binding of the red clover necrotic mosaic virus movement protein to single stranded nucleic acids. J Gen Virol 73: 223–227

    PubMed  CAS  Google Scholar 

  • Pascal E, Goodlove PE, Wu LC, Lazarowitz SG (1993) Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell 5: 795–807

    PubMed  CAS  Google Scholar 

  • Perbal M-C, Thomas CL, Maule AJ (1993) Cauliflower mosaic virus gene I product (PI) forms tubular structures which extend from the surface of infected protoplasts. Virology 195: 281–285

    PubMed  CAS  Google Scholar 

  • Petty ITD, French R, Jones RW, Jackson AO (1990) Identification of barley stripe mosaic virus genes involved in viral RNA replications and systemic movement. EMBO J 9: 3453–3457

    PubMed  CAS  Google Scholar 

  • Reid RJ, Overall RL (1992) Intercellular communication in Chara: factors affecting transnodal electrical and solution fluxes. Plant Cell Environ 15: 507–517

    Google Scholar 

  • Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol 41: 369–419

    Google Scholar 

  • Robinson-Beers K, Evert RF (1991) Fine structure of plasmodesmata in mature leaves of sugarcane. Planta 184: 307–318

    Google Scholar 

  • Saito T, Imai Y, Meshi T, Okada Y (1988) Interviral homologies of the 30K proteins of tobamovirues. Virology 167: 653–656

    PubMed  CAS  Google Scholar 

  • Saito T, Yamanaka K, Okada Y (1990) Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology 176: 329–336

    PubMed  CAS  Google Scholar 

  • Schoumacher F, Erny C, Berna A, Godefroy-Colburn T, Stussi-Garaud C (1992) Nucleic acid-binding properties of the alfalfa mosaic virus movement protein produced in yeast. Virology 188: 896–899

    PubMed  CAS  Google Scholar 

  • Schulz M, Traub O, Knop M, Willecke K, Schnabl H (1992) Immunofluorescent localization of connexin 26-like protein at the surface of mesophyll protoplasts from Vicia faba L. and Helianthus annuus L. Bot Acta 105: 111–115

    CAS  Google Scholar 

  • Shanks M, Tomenius K, Clapham D, Huskisson NS, Barker PJ, Wilson IG, Maule AJ, Lomonossoff GP (1989) Identification and subcellular localization of a putative cell-to-cell transport protein from red clover mottle virus. Virology 173: 400–407

    PubMed  CAS  Google Scholar 

  • Shepherd VA, Goodwin PB (1992a) Seasonal patterns of cell-to-cell communication in Char a corallina Klein ex Welld. I. Cell-to-cell communication in vegetative lateral branches during winter and spring. Plant Cell Environ 15: 137–150

    Google Scholar 

  • Shepherd VA, Goodwin PB (1992b) Seasonal patterns of cell-to-cell communication in Chara corallina Klein ex Welld. II. Cell-to-cell communication during the development of antheridia. Plant Cell Environ 15: 151–162

    Google Scholar 

  • Smith LM, Sabnis DD, Johnson RPC (1987) Immunochemical localization of phloem lectin from Cucurbita maxima using peroxidase and colloidal-gold labels. Planta 170: 461–470

    CAS  Google Scholar 

  • Sulzinski MA, Zaitlin M (1982) Tobacco mosaic virus replication in resistant and susceptible plants: in some resistant species virus is confined to a small number of initially infected cells. Virology 121: 12–19

    PubMed  CAS  Google Scholar 

  • Suzuki M, Kuwata S, Kataoka J, Masuta C, Nitta N, Takanami Y (1991) Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183: 106–113

    PubMed  CAS  Google Scholar 

  • Taliansky ME, Malyshenko SI, Kaplan IB, O.A. K, Atabekov JG (1992) Production of the tobacco mosaic virus (TMV) transport protein in transgenic plants is essential but insufficient for complementing foreign virus transport: a need for the full-length TMV genome or some other TMV-encoded product. J Gen Virol 73: 471–474

    PubMed  Google Scholar 

  • Terry BR, Robards AW (1987) Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171: 145–157

    CAS  Google Scholar 

  • Tilney L, Cooke T, Connely P, Tilney M (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction and protease digestion. J Cell Biol 112: 739–747

    PubMed  CAS  Google Scholar 

  • Tomenius K, Clapham D, Meshi T (1987) Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160: 363–371

    PubMed  CAS  Google Scholar 

  • Tucker EB (1982) Translocation in the staminal hairs of Setcreasea purpurea I. A study of cell ultrastructure and cell to cell passage of molecular probes. Protoplasma 113: 193–202

    CAS  Google Scholar 

  • Tucker EB (1988) Inositol biphosphate and inositol triphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 174: 358–363

    CAS  Google Scholar 

  • Tucker EB (1993) Azide treatment enhances cell-to-cell diffusion in staminal hairs of Setcreasea purpurea. Protoplasma 174: 45–49

    CAS  Google Scholar 

  • Tucker EB, Tucker JE (1993) Cell-to-cell selectivity in staminal hairs of Setcreasea purpurea. Protoplasma 174: 36–44

    Google Scholar 

  • Turgeon R (1991) Symplastic phloem loading and sink-source transport in leaves: a model. In: Bonnemain JL, Delrot S, Lucas WJ, Dainy J (eds) Advances in phloem transport and assimilation compartmentation. Quest Editions, Nantes, pp 18–22

    Google Scholar 

  • Turgeon R, Gowen E (1990) Phloem loading in coleur glumei in absence of carrier-mediated uptake of export sugar from the apoplast. Plant Physiol 94: 1244–1249

    PubMed  CAS  Google Scholar 

  • Turner A, Wells B, Roberts K (1994) Plasmodesmata of maize root tips: structure and composition. J Cell Sci 107: 3351–3361

    PubMed  CAS  Google Scholar 

  • van Lent J, Wellink J, Goldbach R (1990) Evidence for the involvement of the 58K and 48K proteins in the intercellular movement of cowpea mosaic virus. J Gen Virol 71: 219–223

    Google Scholar 

  • van Lent J, Storms M, van der Meer F, Wellink J, Goldbach R (1991) Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplast. J Gen Virol 72: 2615–2623

    PubMed  Google Scholar 

  • Waigmann E, Lucas WJ, Citovsky V, Zambryski P (1994) Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91: 1433–1437

    PubMed  CAS  Google Scholar 

  • Wang N, Fisher DB (1994) The use of fluorescent tracers to characterize the post-phloem transport pathway in maternal tissues of developing wheat grains. Plant Physiol 104: 17–27

    PubMed  CAS  Google Scholar 

  • Ward A, Etessami P, Stanley J (1988) Expression of a bacterial gene in plants mediated by infectious geminiviras DNA. EMBO J 7: 1583–1587

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Ogawa T, Okada Y (1992) In vivo phosphorylation of the 30-kDa protein of tobacco mosaic virus. FEBS Lett 313: 181–184

    PubMed  CAS  Google Scholar 

  • Weber H, Schultze S, Pfitzner AJP (1993) Two amino acid substitutions in the tomato mosaic virus 30-kilodalton movement protein confer the ability to overcome the Tm-2–2 resistance gene in the tomato. J Virol 67: 6432–6438

    PubMed  CAS  Google Scholar 

  • Weintraub M, Ragetli HWJ, Leung E (1976) Elongated virus particles in plasmodesmata. J Ultrastruct Res 56: 351–364

    PubMed  CAS  Google Scholar 

  • Wellink J, Van Kämmen A (1989) Cell-to-cell transport of cowpea mosaic virus requires both the 58K/48K proteins and the capsid proteins. J Gen Virol 70: 2279–2286

    CAS  Google Scholar 

  • Wellink J, van Lent JWM, Verver J, Sujen T, Goldbach RW, van Kämmen AB (1993) The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. J Virol 67: 3660–3664

    PubMed  CAS  Google Scholar 

  • White RG, Badett K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180: 169–184

    CAS  Google Scholar 

  • Wieczorek A, Sanfacon H (1993) Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194: 734–742

    PubMed  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246: 377–379

    PubMed  CAS  Google Scholar 

  • Xiong A, Kim KH, Giesman-Cookmeyer D, Lommell SA (1993) The roles of the red clover necrotic mosaic virus capsid and cell to cell movement proteins in systemic infection. Virology 192: 27–32

    PubMed  CAS  Google Scholar 

  • Xu A, Meiners S, Schindler M (1990) Immunological investigations of relatedness between plant and animal connexins. In: Robards AW (ed) Parallels in cell to cell junctions in plants and animals. Springer, Berlin Heidelberg New York Tokyo, pp 171–183

    Google Scholar 

  • Yahalom A, Warmbrodt RD, Laird DW, Traub O, Revel JP, Willecke K, Epel BL (1991) Maize mesocotyl plasmodesmata proteins cross-react with connexin gap junction protein antibodies. Plant Cell 3: 407–147

    PubMed  CAS  Google Scholar 

  • Ziegler-Graff V, Guilford PJ, Baulcombe DC (1991) Tobacco rattle virus RNA-1 29K gene product potentiates viral movement and also affects symptom induction in tobacco. Virology 182: 145–155

    PubMed  CAS  Google Scholar 

  • Zimmern D, Hunter T (1983) Point mutation in the 30K open reading frame of TMV implicated in temperature-sensitive assembly and local lesion spreading of mutant Ni2519. EMBO J 2: 1893–1900

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this chapter

Cite this chapter

Fenczik, C.A., Epel, B.L., Beachy, R.N. (1996). Role of Plasmodesmata and Virus Movement Proteins in Spread of Plant Viruses. In: Verma, D.P.S. (eds) Signal Transduction in Plant Growth and Development. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7474-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7474-6_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7476-0

  • Online ISBN: 978-3-7091-7474-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics