Advertisement

Abstract

Although a proper definition of “pure cellulose” has not yet been found, the term “cellulose”, as commonly used by chemists, is restricted to a product which may be obtained from raw cotton by removal of fat, wax, pectin and other impurities. It is tacitly assumed that the necessary operations of purification involving treatment with hot dilute alkali, often followed by bleaching with hypochlorite, do not cause deep-rooted changes in the chemical structure of native cellulose. The resulting product, termed “standard cellulose”, is now usually employed as the starting material in structural investigations. During the last one hundred years an enormous mass of experimental data has accumulated from which conflicting views and opposing conceptions have emerged, each of them offering evidence as to the true chemical constitution of cellulose. Many of these suggestions, however, have been based on data interpreted by several workers in support of their favorite theories which reveal only part of the picture and fail to allow a comprehensive generalization.

Keywords

Structural Problem Ester Linkage Glucose Unit Chain Molecule Glucose Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books

  1. 1.
    Hermans, P. H.: Physics of Cellulose Fibers. New York-Amsterdam: Elsevier Publ. Co., Inc. 1946.Google Scholar
  2. 2.
    Heuser, E.: The Chemistry of Cellulose. New York: John Wiley and Sons, Inc. 1944.Google Scholar
  3. 3.
    Ott, E. [Editor]: Cellulose and Cellulose Derivatives. New York: Interscience Publ., Inc. 1943.Google Scholar
  4. 4.
    Pringsheim, H.: Die Polysaccharide, 2nd ed. Berlin: Julius Springer. 1923.Google Scholar
  5. 5.
    Staudinger, H.: Die hochmolekularen organischen Verbindungen. Berlin: Julius Springer. 1932; Makromolekulare Chemie und Biologie. Basel: Wepf u. Co. 1947.Google Scholar

Articles

  1. 6.
    Assaf, A. G., R. H. Haas and C. B. Purves: A Study of the Amorphous Portion of Dry, Swollen Cellulose by an improved Thallous Ethylate Method. J. Amer. chem. Soc. 66, 59 (1944).CrossRefGoogle Scholar
  2. 7.
    Assaf, A. G., R. H. Haas and C. B. Purves: A New Interpretation of the Cellulose-Water Adsorption Isotherm and Data Concerning the Effect of Swelling and Drying on the Colloidal Surface of Cellulose. J. Amer. chem. Soc. 66, 66 (1944).CrossRefGoogle Scholar
  3. 8.
    Battista, O. A. and S. Coppick: Hydrolysis of Native versus Regenerated Cellulose Structures. Text. Res. J. 17, 419 (1947).CrossRefGoogle Scholar
  4. 9.
    Brown, F., S. Dunstan, T. G. Halsall, E. L. Hirst and J. K. N. Jones: Application of New Methods of End-group Determination to Structural Problems in the Polysaccharides. Nature [London] 156, 785 (1945).CrossRefGoogle Scholar
  5. 10.
    Brownsett, T. and G.F. Davidson: The Solution of Chemically. Modified Cotton Cellulose in Alkaline Solutions. VI. The Effect of the Method of Modification on the Relation between Fractional Solubility in Sodium Hydroxide Solution and Fluidity in Cuprammonium Solution. J. Textile Inst. 32, T 25 (1941).CrossRefGoogle Scholar
  6. 11.
    Conrad, C. C. and A. G. Scroggie: Chemical Characterization of Rayon Yarns and Cellulosic Raw Materials. Ind. Engng. Chem. 37, 592 (1945).CrossRefGoogle Scholar
  7. 12.
    Davidson, G. F.: The Progressive Oxidation of Cotton Cellulose by Chromic Acid over a Wide Range of Oxygen Consumption. J. Textile Inst. 29, T 195 (1938).CrossRefGoogle Scholar
  8. 13.
    Davidson, G. F.: Properties of Oxycelluloses Formed in the Early Stages of Oxidation of Cotton Cellulose by Periodic Acid and Metaperiodate. J. Textile Inst. 31, T 81 (1940).CrossRefGoogle Scholar
  9. 14.
    Davidson, G. F.: The Progressive Oxidation of Cotton Cellulose by Periodic Acid and Metaperiodate over a Wide Range of Oxygen Consumption. J. Textile Inst. 32, T 109 (1941).CrossRefGoogle Scholar
  10. 15.
    Davidson, G. F.: The Progressive Oxidation of Cotton Cellulose by Chromic Acid over a Wide Range of Oxygen Consumption. J. Textile Inst. 32, T 132 (1941).CrossRefGoogle Scholar
  11. 16.
    Davidson, G. F.: The Rate of Change in the Properties of Cotton Cellulose under the Prolonged Action of Acids. J. Textile Inst. 34, T 87 (1943).CrossRefGoogle Scholar
  12. 17.
    Davidson, G. F. and T. P. Nevell: The Acidic Properties of Cotton Cellulose and Derived Oxycelluloses. Parts I–VI. J. Textile Inst. 39, T 59 (1948).CrossRefGoogle Scholar
  13. 18.
    Ekenstam, Af, A.: Über das Verhalten der Cellulose in Mineralsäure-Lösungen. I. Die Bestimmung des Molekulargewichts in Phosphorsäure-Lösung. Ber. dtsch. chem. Ges. 69, 549 (1936).CrossRefGoogle Scholar
  14. 19.
    Ekenstam, Af, A.: Über das Verhalten der Cellulose in Mineralsäure-Lösungen. II. Kinetisches Studium des Abbaus der Cellulose in Säure-Lösungen. Ber. dtsch. chem. Ges. 69, 553 (1936).CrossRefGoogle Scholar
  15. 20.
    Freudenberg, K.: Zur Kenntnis der Cellulose. Ber. dtsch. chem. Ges. 54, 767 (1921).CrossRefGoogle Scholar
  16. 21.
    Freudenberg, K. u. G. Blomqvist: Die Hydrolyse der Cellulose und ihre Oligosaccharide. Ber. dtsch. chem. Ges. 68, 2070 (1935).CrossRefGoogle Scholar
  17. 22.
    Freudenberg, K. u. W. Kuhn: Die Hydrolyse der Polysaccharide. Ber. dtsch. chem. Ges. 65, 484 (1932).CrossRefGoogle Scholar
  18. 23.
    Freudenberg, K., K. Friedrich u. I. Bumann: Über Cellulose und Stärke. Liebigs Ann. Chem. 494, 41 (1932).CrossRefGoogle Scholar
  19. 24.
    Freudenberg, K., W. Kuhn, W. Dürr, F. Bolz u. G. Steinbrunn: Die Hydrolyse der Polysaccharide (14. Mitteil, über Lignin und Cellulose). Ber. dtsch. chem. Ges. 63, 1510 (1930).CrossRefGoogle Scholar
  20. 25.
    Frey-Wyssling, A. and K. Mühlethaler: Use of Supersonics in the Preparation of Fiber Samples for Electron-microscope Studies. Text. Res. J. 17, 32 (1947).CrossRefGoogle Scholar
  21. 26.
    Friese, H. u. K. Hess: Zur Cellobiosebildung. III. Mitteil. über die Acetolyse der Cellulose. Liebigs Ann. Chem. 456, 38 (1927).CrossRefGoogle Scholar
  22. 27.
    Frilette, V. J., J. Hanle and H. Mark: Rate of Exchange of Cellulose with Heavy Water. J. Amer. chem. Soc. 70, 1107 (1948).CrossRefGoogle Scholar
  23. 28.
    Fritsch, P.: Über die Umwandlung des Pentachloracetons in Trichloracrylsäure und Monochlormalonsäure. Liebigs Ann. Chem. 297, 318 (1897).Google Scholar
  24. 29.
    Fritsch, P. u. F. Feldmann: Synthese aromatisch disubstituierter Essigsäuren mittelst Chloral. Liebigs Ann. Chem. 306, 72 (1899).CrossRefGoogle Scholar
  25. 30.
    Goldfinger, G., H. Mark and S. Siggia: Kinetics of Oxidation of Cellulose with Periodic. Acid. Ind. Engng. Chem. 35, 1083 (1943).CrossRefGoogle Scholar
  26. 31.
    Golova, O. P.: The Molecular Weight of Cellulose. Chem. Abstr. 40, 457 (1946).Google Scholar
  27. 32.
    Gralén, N.: Sedimentation and Diffusion Measurements on Cellulose and Cellulose Derivatives. Thesis; Uppsala. 1944.Google Scholar
  28. 33.
    Haworth, W. N.: Die Konstitution einiger Kohlenhydrate. Ber. dtsch. chem. Ges. 65, (A) 60 (1932).Google Scholar
  29. 34.
    Haworth, W. N.: The Structure of Cellulose and other Polymers Related to Simple Sugars. J. Soc. chem. Ind. 58, 917 (1939).CrossRefGoogle Scholar
  30. 35.
    Haworth, W. N. and E. L. Hirst: The Constitution of the Disaccharides. V. Cellobiose (Cellose). J. chem. Soc. [London] 119, 196 (1921).Google Scholar
  31. 36.
    Haworth, W. N. and H. Machemer: Polysaccharides. X. Molecular Structure of Cellulose. J. chem. Soc. [London] 1932, 2270.Google Scholar
  32. 37.
    Haworth, W. N., C. W. Long and J. H. G. Plant: The Constitution of the Disaccharides. XVI. Cellobiose. J. chem. Soc. [London] 1927, 2809.Google Scholar
  33. 38.
    Head, F. S. H.: The Alkali-Sensitivity of the Aldehydes Obtained by Periodate Oxidation of β-Methyl Glucoside, β-Methyl Cellobioside, and Cellulose. J. Textile Inst. 38, T 389 (1947).CrossRefGoogle Scholar
  34. 39.
    Hess, K.: Über die Konstitution der Zellulose I; Hess, K. u. W. Wittels-Bach: Die Acetolyse der Äthyl-Zellulose. Z. Elektrochem. angew. physik. Chem. 26, 232 (1920).Google Scholar
  35. 40.
    Hess, K. u. F. Neumann: Endgruppen-Frage und Konstitution der Cellulose Ber. dtsch. chem. Ges. 70, 728 (1937).CrossRefGoogle Scholar
  36. 41.
    Hess, K. u. E. Steurer: Vergleich von Endgruppenbestimmung und Viscosität bei Cellulose. Ber. dtsch. chem. Ges. 73, 669 (1940).CrossRefGoogle Scholar
  37. 42.
    Hess, K. u. W. Weltzien: Über Trimethylcellulose A und ihre Spaltung. Liebigs Ann. Chem. 442, 49 (1925).Google Scholar
  38. 43.
    Hiller, L. A., jr. and E. Pacsu: Cellulose Studies. V. Reducing End-Group Estimation: A New Method Using Potassium Permanganate. Text. Res. J. 16, 318 (1946).CrossRefGoogle Scholar
  39. 44.
    Hiller, L. A., jr. and E. Pacsu: Cellulose Studies. VI. Determination of Carboxyl Groups in Cellulosic Materials. Text. Res. J. 16, 390 (1946).CrossRefGoogle Scholar
  40. 45.
    Hiller, L. A., jr. and E. Pacsu: Cellulose Studies. VII. The Nature of “Hydrocellulose”. Text. Res. J. 16, 490 (1946).CrossRefGoogle Scholar
  41. 46.
    Hiller, L. A., jr. and E. Pacsu: Cellulose Studies. VIII. Viscosity and Hydrolytic Degradation of Cellulose in Phosphoric Acid Solution. Text. Res. J. 16, 564 (1946).CrossRefGoogle Scholar
  42. 47.
    Hollihan, J. P.: Effect of Ageing of the Alkali Cellulose on the Carboxyl Content of Rayons. Text. Res. J. 16, 487 (1946).CrossRefGoogle Scholar
  43. 48.
    Husemann, E. and O. H. Weber: The Carboxyl Content of Fibers and Wood Celluloses. J. prakt. Chem. 159, 334 (1942).Google Scholar
  44. Husemann, E. and O. H. Weber: Chem. Abstr. 37, 3931 (1943).Google Scholar
  45. 49.
    Irvine, J. C. and E. L. Hirst: The Constitution of Polysaccharides. V. The Yield of Glucose from Cotton Cellulose. J. chem. Soc. [London] 121, 1585 (1922).Google Scholar
  46. 50.
    Irvine, J. C. and E. L. Hirst: The Constitution of Polysaccharides. VI. The Molecular Structure of Cotton Cellulose. J. chem. Soc. [London] 123, 529 (1923).Google Scholar
  47. 51.
    Jackson, E. L. and C. S. Hudson: Application of the Cleavage Type of Oxidation by Periodic Acid to Starch and Cellulose. J. Amer. chem. Soc. 59, 2049 (1937).CrossRefGoogle Scholar
  48. 52.
    Karrer, P. u. E. Escher: Über Acetylierung und Methylierung der Cellulose. Ein Beitrag zur Konstitutionsfrage des Kohlenhydrates. Helv. chim. Acta 19, 1192 (1936).CrossRefGoogle Scholar
  49. 53.
    Karrer, P. u. H. Illing: Polysaccharide. XXX. Zur fermentativen Spaltung der Gerüstzellulose. Kolloid-Z. 36, Suppl. 91 (1925).CrossRefGoogle Scholar
  50. 54.
    Kuhn, W.: Über die Kinetik des Abbaues hochmolekularer Ketten. Ber. dtsch. chem. Ges. 63, 1503 (1930).CrossRefGoogle Scholar
  51. 53.
    Mark, H. u. K.H. Meyer: Über den Bau des kristallisierten Anteils der Cellulose. II. Z. physik. Chem., Abt. B 2, 115 (1928).Google Scholar
  52. 56.
    Martin, A. R., L. Smith, R. L. Whistler and M. Harris: Estimation of Aldehyde Groups in Hydrocellulose from Cotton. J. Res. nat. Bur. Standards 27, 449 (1941).Google Scholar
  53. 57.
    Mehta, P. C. and E. Pacsu: Cellulose Studies. X. Heterogeneous Degradation of Cellulose and Viscose Rayon in Organic Acid Solutions. Text. Res. J. 18 387 (1948).CrossRefGoogle Scholar
  54. 58.
    Meyer, K. H.: Über den Bau des krystallisierten Anteils der Cellulose. V. Ber. dtsch. chem. Ges. 70, 266 (1937).CrossRefGoogle Scholar
  55. 59.
    Meyer, K. H. u. H. Mark: Über den Bau des krystallisierten Anteils der Cellulose. Ber. dtsch. chem. Ges. 61, 593 (1928).CrossRefGoogle Scholar
  56. 60.
    Meyer, K. H. et L. Misch: Positions des atoms dans le nouveau modèle spatial de la cellulose. Helv. chim. Acta 20, 232 (1937).CrossRefGoogle Scholar
  57. 61.
    Monier-Williams, G. W.: The Hydrolysis of Cotton Cellulose. J. chem. Soc. [London] 119, 803 (1921).Google Scholar
  58. 62.
    Neumann, F. u. K. Hess: Nachweis kleinster Mengen endständiger Gruppen bei Polysacchariden. Ber. dtsch. chem. Ges. 70, 721 (1937).CrossRefGoogle Scholar
  59. 63.
    Nickerson, R. F.: Hydrolysis and Catalytic Oxidation of Cellulosic Materials. Hydrolysis of Natural, Regenerated, and Substituted Celluloses. Ind. Engng. Chem. 33, 1022 (1941).CrossRefGoogle Scholar
  60. 64.
    Nickerson, R. F.: Hydrolysis and Catalytic Oxidation of Cellulosic Materials. Ind. Engng. Chem., Analyt. Edit. 13, 423 (1941).CrossRefGoogle Scholar
  61. 65.
    Nickerson, R. F.: Hydrolysis and Catalytic Oxidation of Cellulosic Materials. Hydrolysis of Mercerized Cotton. Ind. Engng. Chem. 34, 85 (1942).CrossRefGoogle Scholar
  62. 66.
    Nickerson, R. F.: Hydrolysis and Catalytic Oxidation of Cellulosic Materials. Characterization of Celluloses. Ind. Engng. Chem. 34, 1480 (1942).CrossRefGoogle Scholar
  63. 67.
    NiCkerson, R. F. and C.B. Leape: Distribution of Pectic Acid in Cotton Fibers. Ind. Engng. Chem. 33, 83 (1941).CrossRefGoogle Scholar
  64. 68.
    Pacsu, E.: Cellulose Studies. I. Reaction of Oxycellulose with Aqueous Acids and Alkalies. Text. Res. J. 15, 354 (1945).CrossRefGoogle Scholar
  65. 69.
    Pacsu, E.: Cellulose Studies. II. Estimation of Aldehyde Groups in Oxycellulose by the Hypoiodite Method. Text. Res. J. 16, 105 (1946).CrossRefGoogle Scholar
  66. 70.
    Pacsu, E.: Cellulose Studies. IX. The Molecular Structure of Cellulose and Starch Text. Res. J. 17, 405 (1947).Google Scholar
  67. Pacsu, E.: J. Polymer Sci. 2, 565 (1947).CrossRefGoogle Scholar
  68. 71.
    Pacsu, E. and L. A. Hiller, jr.: Cellulose Studies. IV. The Chemical Structure of Cellulose and Starch. Text. Res. J. 16, 243 (1946).CrossRefGoogle Scholar
  69. 72.
    Philipp, H. J., M.L. Nelson and H. M. Ziifle: Crystallinity of Cellulose Fibers as Determined by Acid Hydrolysis. Text. Res. J. 17, 585 (1947).CrossRefGoogle Scholar
  70. 73.
    Pictet, A.: L’amidon et ses produits de dégradation. Rapports sur les hydrates de carbon, Xième Conférence de l’Union Internationale de Chimie, p. 122. Liège. 1930.Google Scholar
  71. 74.
    Plötze, E. u. H. Person: Die Kristallitorientierung in Fasercellulosen. Z. physik. Chem., Abt. B 45, 193 (1940).Google Scholar
  72. 75.
    Purves, C.B.: Historical Survey. Ref. (3), p. 29.Google Scholar
  73. 76.
    Purves, C.B.: Chain Structure: Ref. (3), p. 54.Google Scholar
  74. 77.
    Roseveare, W. E., R. C. Waller and J. N. Nelson: Structure and Properties of Regenerated Cellulose. Text. Res. J. 18, 114 (1948).CrossRefGoogle Scholar
  75. 78.
    Reitter, H. u. A. Weindel: Versuche zur Darstellung von Orthosäureestern. Ber. dtsch. chem. Ges. 40, 3358 (1907).CrossRefGoogle Scholar
  76. 79.
    Rutherford, H.A. and M. Harris: Oxycellulose. Ref. (3), p. 175.Google Scholar
  77. 80.
    Rutherford, H.A. and M. Harris: Hydrocellulose. Ref. (3), p. 164.Google Scholar
  78. 81.
    Schulz, G. V. u. E. Husemann: Über die Verteilung der Molekulargewichte in abgebauten Cellulosen und ein periodisches Aufbauprinzip im Cellulose-molekül. Z. physik. Chem., Abt. B 52, 23 (1942).Google Scholar
  79. 82.
    Schwalbe, C.G.: Über das Reduktionsvermögen einiger Cellulosearten. Ber. dtsch. chem. Ges. 40, 1347 (1907).CrossRefGoogle Scholar
  80. 83.
    Sisson, W. A.: X-Ray Examination. Ref. (3), p. 203.Google Scholar
  81. 84.
    Skraup, H. u. J. König: Über Cellose, eine Biose aus Cellulose. Ber. dtsch. chem. Ges. 34, 1115 (1901).CrossRefGoogle Scholar
  82. 85.
    Sookne, A.M. and M.Harris: End Groups. Ref. (3), p. 77.Google Scholar
  83. 86.
    Sponsler, O. L. and W. H. Dore: The Structure of Ramie Cellulose as Derived from X-Ray Data. Fourth Colloid Symposium Monograph, p. 174. New York: Chemical Catalog Co. 1926.Google Scholar
  84. 87.
    Spurlin, H. M.: Solubility. Ref. (3), p. 853.Google Scholar
  85. 88.
    Stamm, A. J. and W.E. Cohen: The Viscosity of Cellulose in Phosphoric Acid Solution. J. physic. Chem. 42, 921 (1938).CrossRefGoogle Scholar
  86. 89.
    Staudinger, H.: Über die Konstitution der Cellulose. Cellulosechemie 15, 53 (1934).Google Scholar
  87. 90.
    Staudinger, H. u. E. O. Leupold: Über das Cellopentaose-acetat und die Konstitution der Cellulose. Ber. dtsch. chem. Ges. 67, 479 (1934).CrossRefGoogle Scholar
  88. 91.
    Staudinger, H. u. A. W. Sohn: Über makromolekulare Verbindungen. 227. Mitteil.: Über normale und fehlerhafte Cellulosen. Ber. dtsch. chem. Ges. 72, 1709 (1939).CrossRefGoogle Scholar
  89. 92.
    Staudinger, H. u. A. W. Sohn: Über makromolekulare Verbindungen. 242. Mitteil.: Über native und umgefällte Cellulosen und deren Nitrate. J. prakt. Chem. 155, 177 (1940).CrossRefGoogle Scholar
  90. 93.
    Staudinger, H. u. M. Sorkin: Über hochpolymere Verbindungen. 162. Mitteil.: Über Hydro-cellulosen. Ber. dtsch. chem. Ges. 70, 1565 (1937).CrossRefGoogle Scholar
  91. 94.
    Steurer, E.: Über den Einfluß des Lichtes auf Celluloselösungen. Z. physik. Chem., Abt. B 47, 139 (1940).Google Scholar
  92. 95.
    Steurer, E. u. H.-W. Mertens: Der Sauerstoffeinfluß beim Lichtabbau von Methylcellulosen. Ber. dtsch. chem. Ges. 74, 790 (1941).CrossRefGoogle Scholar
  93. 96.
    Unruh, C. C. and W. O. Kenyon: Investigation of the Properties of Cellulose Oxidized by Nitrogen Dioxide. J. Amer. chem. Soc. 64, 127 (1942).CrossRefGoogle Scholar
  94. 97.
    Unruh, C. C. and W. O. Kenyon: The Formation and Properties of Oxidized Celluloses. Text. Res. J. 16, 1 (1946).CrossRefGoogle Scholar
  95. 98.
    Van Fossen, P. and E. Pacsu: Cellulose Studies. III. Hyperoxidation of Cellulose with Concentrated Sodium Hypobromite Solutions. A Simple Method for the Determination of Hypobromite and Bromate Ions in the Presence of Each Other. Text. Res. J. 16, 163 (1946).CrossRefGoogle Scholar
  96. 99.
    Whistler, R. L., A.R. Martin and M. Harris: Determination of Uronic Acids in Cellulosic Materials. J. Res. nat. Bur. Standards 24, 13 (1940).Google Scholar
  97. 100.
    Yackel, E. C. and W. O. Kenyon: Oxidation of Cellulose by Nitrogen Dioxide. J. Amer. chem. Soc. 64, 121 (1942).CrossRefGoogle Scholar
  98. 101.
    Zechmeister, L. u. G. Tóth: Zur Kenntnis der Hydrolyse von Cellulose und der dabei auftretenden Zwischenprodukte. Ber. dtsch. chem. Ges. 64, 854 (1931).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag in Vienna 1948

Authors and Affiliations

  • E. Pacsu
    • 1
  1. 1.PrincetonUSA

Personalised recommendations