The purpose of this survey is to give non-biologists, particularly chemists, a brief view of the field of chemical genetics—its basic aims, its methods, and its accomplishments. It is not to be an exhaustive review but is written from what is admittedly a limited point of view. Since it is planned primarily for readers with a background in chemistry, an attempt is made to make it autonomous biologically—that is, to assume little specific biological knowledge.


Mutant Strain Nicotinic Acid Cold Spring Harbor Pantothenic Acid Neurospora Crassa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, J.: Life: Its Nature and Origin, p. 291. New York: Reinhold Pub. Corp. 1948.CrossRefGoogle Scholar
  2. 2.
    Atwood, S. S. and J. T. Sullivan: Inheritance of a Cyanogenetic Glucoside and its Hydrolyzing Enzyme in Trifolium repens J. Heredity 34, 311 (1943).Google Scholar
  3. 3.
    Auerbach, C., J. M. Robson and J. G. Carr: The Chemical Production of Mutations. Science [New York] 105, 243 (1947).CrossRefGoogle Scholar
  4. 4.
    Avery, O. T., C. M. McLeod and M. McCarty: Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III. J. exp. Medicine 79, 137 (1944).CrossRefGoogle Scholar
  5. 5.
    Ball, E. G.: Xanthinoxidase: Purification and Properties. J. biol. Chemistry 128, 51 (1939).Google Scholar
  6. 6.
    Beadle, G. W.: Genetics and Metabolism in Neurospora. Physiologic. Rev. 25, 643 (1945).Google Scholar
  7. 7.
    Beadle, G. W.: Biochemical Genetics. Chem. Reviews 37, 15 (1945).CrossRefGoogle Scholar
  8. 8.
    Beadle, G. W., H. K. Mitchell and J. F. Nyc: Kynurenin as an Intermediate in the Formation of Nicotinic Acid from Tryptophane by Neurospora. Proc. nat. Acad. Sci. USA 33, 155 (1947).CrossRefGoogle Scholar
  9. 9.
    Beadle, G. W. and E. L. Tatum: Genetic Control of Biochemical Reactions in Neurospora. Proc. nat. Acad. Sci. USA 27, 499 (1941).CrossRefGoogle Scholar
  10. 10.
    Beadle, G. W. and E. L. Tatum: Neurospora. II. Methods of Producing and Detecting Mutations Concerned with Nutritional Requirements. Amer. J. Bot. 32, 678 (1945).CrossRefGoogle Scholar
  11. 11.
    Binkley, F. and V. Du Vigneaud: The Formation of Cysteine from Homo-cysteine and Serine by Liver Tissue of Rats. J. biol. Chemistry 144, 507 (1948).Google Scholar
  12. 12.
    Boivin, A.: Directed Mutation in Colon Bacilli, by an Inducing Principle of Desoxyribonucleic Nature: Its Meaning for the General Biochemistry of Heredity. Cold Spring Harbor Sympos. quantitat. Biol. 12, 6 (1947).Google Scholar
  13. 13.
    Bonner, D.: Biochemical Mutations in Neurospora. Cold Spring Harbor Sympos. quantitat. Biol. 11, 14 (1946).Google Scholar
  14. 14.
    Bonner, D.: The Identification of a Natural Precursor of Nicotinic Acid. Proc. nat. Acad. Sci. USA 34, 5 (1948).CrossRefGoogle Scholar
  15. 15.
    Bonner, D. and G. W. Beadle: Mutant Strains of Neurospora Requiring Nicotinamide or Related Compounds for Growth. Arch. Biochemistry 11, 319 (1946).Google Scholar
  16. 16.
    Brächet, J.: Nucleic Acids in the Cell and Embryo. In Nucleic Acid. Symposia Soc. Exp. Biology, p. 207–224. Cambridge: Univ. Press. 1947.Google Scholar
  17. 17.
    Brand, E., R. J.Block, B. Kassell and G. F. Cahill: Carboxymethyl-cysteine Metabolism: Its Implications on Therapy in Cystinuria and on the Methionine-Cysteine Relationship. Proc. Soc. exp. Biol. Med. 35, 501 (1936).Google Scholar
  18. 18.
    Burnet, F. M.: Virus as Organism, p. 134. Cambridge, Mass.: Harvard Univ. Press. 1945.Google Scholar
  19. 19.
    Caspersson, T.: The Relation Between Nucleic Acid and Protein Synthesis. In Nucleic Acid. Symposia Soc. Exp. Biology, p. 127–151. Cambridge: Univ. Press. 1947.Google Scholar
  20. 20.
    Castle, W. E.: The Linkage Relations of Yellow Fat in Rabbits. Proc. nat. Acad. Sci. USA 19, 947 (1933).CrossRefGoogle Scholar
  21. 21.
    Chittenden, R. J. and C. Pellew: A Suggested Interpretation of Anisogeny. Nature [London] 119, 10 (1927).Google Scholar
  22. 22.
    Claude, A.: Particulate Components of Cytoplasm. Cold Spring Harbor Sympos. quantitat. Biol. 9, 263 (1941).Google Scholar
  23. 23.
    Corkill, L.: Cyanogenesis in White Clover (Trifolium repens L.). New Zealand J. Sci. Technol., Sect. B 23, 178 (1942).Google Scholar
  24. 24.
    Delbrück, M.: A Theory of Autocatalytic Synthesis of Polypeptides and its Application to the Problem of Chromosome Reproduction. Cold Spring Harbor Sympos. quantitat. Biol. 9, 122 (1941).Google Scholar
  25. 25.
    Delbrück, M. and W. T. Bailey, Jr.: Induced Mutations in Bacterial Viruses. Cold Spring Harbor Sympos. quantitat. Biol. 11, 33 (1946).Google Scholar
  26. 26.
    Ephrussi, B.: Chemistry of “eye Color Hormones” of Drosophila. Quart. Rev. Biol. 17, 327 (1942).CrossRefGoogle Scholar
  27. 27.
    Figge, F. H. J.: Pigment Metabolism Studies: The Regulation of Tyrosinase Melanin Formation by Oxidation-Reduction Systems. J. cellular comparat. Physiol. 15, 233 (1940).CrossRefGoogle Scholar
  28. 28.
    Fisher, R. A.: The Rhesus Factor. Amer. Scientist 35, 95, 113 (1947).Google Scholar
  29. 29.
    FÖlling, A.: Über Ausscheidung von Phenylbrenztraubensäure in dem Harn als Stoffwechselanomalie in Verbindung mit Imbezillität. Hoppe-Seyler’s Z. physiol. Chem. 227, 169 (1934).CrossRefGoogle Scholar
  30. 30.
    Fölling, A., O. L. Mohr and L. Rüüd: Oligophrenia Phenylpyrouvica, a Recessive Syndrome in Man. Skrifter Norske Videnskaps-Acad., Oslo, Mat.—Naturv. Klasse No. 13, 44 (1945) Google Scholar
  31. 31.
    Garrod, A. E.: Inborn Errors of Metabolism, 2nd. ed., p. 216. Oxford: Med. Pub., Oxford Univ. Press. 1923.Google Scholar
  32. 32.
    Giles, N. H., Jr. and E. Z. Lederberg: Induced Reversions of Biochemical Mutants in Neurospora crassa. Amer. J. Bot. 35, 157 (1948).CrossRefGoogle Scholar
  33. 33.
    Gross, O.: Über den Einfluß des Blutserums des Normalen und des Alkapto-nurikers auf Homogentisinsäure. Biochem. Z. 61, 165 (1914).Google Scholar
  34. 34.
    Haldane, J. B. S.: The Rate of Spontaneous Mutation of a Human Gene. J. Genetics 31, 317 (1935).CrossRefGoogle Scholar
  35. 35.
    Haldane, J. B. S.: New Paths in Genetics, p. 206. New York: Harper & Bros. 1942.Google Scholar
  36. 36.
    L’Héritier, PH. et F. H. De Scoeux: Transmission par Graffe et Injection de la Sensibilité Héréditaire au Gaz Carbonique chez la Drosophile. Bull. biol. France Belgique 81, 70 (1947).Google Scholar
  37. 37.
    Hershey, A. D. and R. Rotman: Linkage Among Genes Controlling Inhibition of Lysis in a Bacterial Virus. Proc. nat. Acad. Sci. USA 34, 89 (1948).CrossRefGoogle Scholar
  38. 38.
    Hollaender, A. and C. W. Emmons: Wavelength Dépendance of Mutation Production in the Ultraviolet with Special Emphasis on Fungi. Cold Spring Harbor Sympos. quantitat. Biol. 9, 179 (1941).Google Scholar
  39. 39.
    Horowitz, N. H.: On the Evolution of Biochemical Syntheses. Proc. nat. Acad. Sci. USA 31, 153 (1945).CrossRefGoogle Scholar
  40. 40.
    Horowitz, N. H.: Methionine Synthesis in Neurospora. The Isolation of Cystathionine. J. biol. Chemistry 171, 255 (1947).Google Scholar
  41. 41.
    Horowitz, N. H., M. B. Houlahan, M. V. Hungate and B. Wright: Mustard Gas Mutations in Neurospora. Science [New York] 104, 233 (1946).CrossRefGoogle Scholar
  42. 42.
    Houlahan, M. B. and H. K. Mitchell: A Suppressor in Neurospora and its Use as Evidence for Allelism. Proc. nat. Acad. Sci. USA 33, 223 (1947).CrossRefGoogle Scholar
  43. 43.
    Huskins, C. L.: The Subdivision of the Chromosomes and their Multiplication in Non-dividing Tissues: Possible Interpretations in Terms of Gene Structure and Gene Action. Amer. Naturalist 81, 401 (1947).CrossRefGoogle Scholar
  44. 44.
    Imai, Y.: Chlorophyll Varigations Due to Mutable Genes and Plastids. Z. indukt. Abstammungs-u. Vererbungslehre 71, 61 (1936).CrossRefGoogle Scholar
  45. 45.
    Irwin, M. R.: Immunogenetics. Advances in Genetics 1, 133 (1947).CrossRefGoogle Scholar
  46. 46.
    Kaufman, S., G. W. Schwert and H. Neurath: Specific Peptidase and Esterase Activities of Chymotrypsin. Arch. Biochemistry 17, 203 (1948).Google Scholar
  47. 47.
    Knight, B. C. J. G.: Bacterial Nutrition. Med. Research Council (Brit.) Special Rept. Series, No. 210, 182 (1936).Google Scholar
  48. 48.
    Knight, C. A.: Nucleoproteins and Virus Activity. Cold Spring Harbor Sympos. quantitat. Biol. 12, 115 (1947).Google Scholar
  49. 49.
    Knox, W. E.: The Quinine-Oxidizing Enzyme and Liver Aldehyde Oxidase. J. biol. Chemistry 163, 699 (1946).Google Scholar
  50. 50.
    Lawrence, J. S. and C. G. Craddock, Jr.: Hemophilia: The Mechanism of Development and Action of an Anticoagulant Found in Two Cases. Science [New York] 106, 473 (1947).CrossRefGoogle Scholar
  51. 51.
    Lawrence, W. J. C. and J. R. Price: The Genetics and Chemistry of Flower Colour Variation. Biol. Rev. Cambridge philos. Soc. 15, 35 (1940).CrossRefGoogle Scholar
  52. 52.
    Lederberg, J.: Gene Recombination and Linked Gene Segregations in Escherichia coli. Genetics 32, 505 (1947).Google Scholar
  53. 53.
    Luria, S. E.: Reactivation of Irradiated Bacteriophage by Transfer of Self-Reproducing Units. Proc. nat. Acad. Sci. USA 33, 253 (1947).CrossRefGoogle Scholar
  54. 54.
    Lwoff, A.: Les Facteurs de Croissance pour les Microorganisms. Ann. Inst. Pasteur 61, 580 (1938).Google Scholar
  55. 55.
    McCarty, M.: Chemical Nature and Biological Specificity of the Substance Inducing Transformation of Pneumococcal Types. Bacteriol. Rev. 10, 63 (1946).Google Scholar
  56. 56.
    McClintock, B.: Neurospora. I. Preliminary Observations of the Chromosomes of Neurospora crassa. Amer. J. Bot. 32, 671 (1945).CrossRefGoogle Scholar
  57. 57.
    McElroy, W. D., J. E. Cushing and H. Miller: The Induction of Biochemical Mutations in Neurospora crassa by Nitrogen Mustard. J. comparat. Cellular Physiol. 30, 331 (1947).CrossRefGoogle Scholar
  58. 58.
    Mason, H. S.: The Chemistry of Melanin. J. biol. Chemistry 168, 433 (1947).Google Scholar
  59. 59.
    Medes, G.: A New Error of Tyrosine Metabolism: Tyrosinosis. The Intermediary Metabolism of Tyrosine and Phenylalanine. Biochemic. J. 26, 917 (1932).Google Scholar
  60. 60.
    Metz, C. W.: Duplication of Chromosome Parts as a Factor in Evolution. Amer. Naturalist 81, 81 (1947).CrossRefGoogle Scholar
  61. 61.
    Mirsky, A. E. and H. Ris: The Chemical Composition of Isolated Chromosomes. J. gen. Physiol. 31, 7 (1947).CrossRefGoogle Scholar
  62. 62.
    Mitchell, H. K. and J. F. Nyc: Hydroxyanthranilic Acid as a Precursor of Nicotinic Acid in Neurospora. Proc. nat. Acad. Sci. USA 34, 1 (1948).CrossRefGoogle Scholar
  63. 63.
    Moewus, F.: Zur Sexualität der niederen Organismen. I. Flagellaten und Algen. Erg. Biologie 8, 287 (1941).Google Scholar
  64. 64.
    Muller, H. J.: Pilgrim Trust Lecture: The Gene. Proc. Roy. Soc. [London], Ser. B 134, 1 (1947).Google Scholar
  65. 65.
    Oparin, A. I.: The Origin of Life, p. 270. (Translated by S. MORGULIS.) New York: The Macmillan Co. 1938.Google Scholar
  66. 66.
    Penrose, L. S.: Inheritance of Phenylpyruvic Amentia (Phenylketonuria). Lancet 229, 192 (1935).CrossRefGoogle Scholar
  67. 67.
    Preer, J. R.: Some Properties of a Genetic Cytoplasmic Factor in Paramecium. Proc. nat. Acad. Sci. USA 32, 247 (1946).CrossRefGoogle Scholar
  68. 68.
    Rhoades, M. M.: The Cytoplasmic Inheritance of Male Sterility in Zea mays. J. Genetics 27, 71 (1933).CrossRefGoogle Scholar
  69. 69.
    Rhoades, M. M.: Plastid Mutations. Cold Spring Harbor Sympos. quantitat. Biol. 11, 202 (1946).Google Scholar
  70. 70.
    Robinow, C. F.: Nuclear Apparatus and Cell Structure of Rod-shaped Bacteria, In Dubos: The Bacterial Cell. p. 355–370. Cambridge, Mass.: Harvard Univ. Press. 1945.Google Scholar
  71. 71.
    Russell, W. L.: Investigation of the Physiological Genetics of Hair and Skin Color in the Guinea Pig by Means of the Dopa Reaction. Genetics 24, 645 (1939).Google Scholar
  72. 72.
    Sawin, P. B. and D. Glick: Atropinesterase, a Genetically Determined Enzyme in the Rabbit. Proc. nat. Acad. Sci., USA 29, 55 (1943).CrossRefGoogle Scholar
  73. 73.
    Schwert, G. W., H. Neurath, S. Kaufman and J. E. Snoke: The Specific Esterase Activity of Trypsin. J. biol. Chemistry 172, 221 (1948).Google Scholar
  74. 74.
    Sonneborn, T. M.: Sex Hormones in Unicellular Organisms. Cold Spring Harbor Sympos. quantitat. Biol. 10, 111 (1942).Google Scholar
  75. 75.
    Sonneborn, T. M.: Recent Advances in the Genetics of Paramecium and Euplotes. Advances in Genetics 1, 264 (1947).CrossRefGoogle Scholar
  76. 76.
    Spiegelman, S.: Nuclear and Cytoplasmic Factors Controlling Enzymatic Constitution. Cold Spring Harbor Sympos. quantitat. Biol. 11, 256 (1946).Google Scholar
  77. 77.
    Stadler, L. G. and F. M. Uber: Genetic Effects of Ultraviolet Radiation in Maize. IV. Comparisons of Monochromatic Radiations. Genetics 27, 84 (1942).Google Scholar
  78. 78.
    Strandskov, H. H.: Physiological Aspects of Human Genetics. Five Human Blood Characteristics. Physiologic. Rev. 24, 445 (1944).Google Scholar
  79. 79.
    Tatum, E. L.: Induced Biochemical Mutations in Bacteria. Cold Spring Harbor Sympos. quantitat. Biol. 11, 278 (1946).Google Scholar
  80. 80.
    Tatum, E. L. and D. Bonner: Indole and Serine in the Biosynthesis and Breakdown of Tryptophane. Proc. nat. Acad. Sci. USA 30, 30 (1944).CrossRefGoogle Scholar
  81. 81.
    Teas, H. J., N. H. Horowitz and M. Fling: Homoserine as a Precursor of Threonine and Methionine in Neurospora. J. biol. Chemistry 172, 651 (1948).Google Scholar
  82. 82.
    Wright, S.: The Physiology of the Gene. Physiologic. Rev. 21, 487 (1941).Google Scholar
  83. 83.
    Wright, S.: The Physiological Genetics of Coat Color of the Guinea Pig. Biol. Symposia 6, 337 (1942).Google Scholar
  84. 84.
    Wright, S.: Genes as Physiological Agents: General Considerations. Amer. Naturalist 79, 289 (1945).CrossRefGoogle Scholar
  85. 85.
    Zechmeister, L., A. L. Lerosen, F. W. Went and L. Pauling: Prolycopene, a Naturally Occurring Stereoisomer of Lycopene. Proc. nat. Acad. Sci. USA 27, 468 (1941).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag in Vienna 1948

Authors and Affiliations

  • G. W. Beadle
    • 1
  1. 1.PasadenaUSA

Personalised recommendations