“Since the original work of Harden and Young on the function of phosphates in alcoholic fermentation, the idea that the formation of phosphoric esters may be an essential stage not only in the biochemical degradation of hexoses but also in the condensation of these sugars to the polysaccharides has taken firm hold of biochemical imagination.”


Phosphate Group Free Acid Specific Rotation Phosphoric Ester Sugar Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albaum, H. G. and W. W. Umbreit: Differentiation Between Ribose-3-phosphate and Ribose-5-phosphate by Means of the Orcinol-Pentose Reaction. J. biol. Chemistry 167, 369 (1947).Google Scholar
  2. 2.
    Atherton, F. R., H. T. Howard and A. R. Todd: Studies on Phosphorylation. IV. Further Studies on the Use of Dibenzyl Chlorophosphonate and the Examination of Certain Alternative Phosphorylation Methods. J. chem. Soc. (London) 1948, 1106.Google Scholar
  3. 3.
    Atherton, F. R., H. T. Openshaw and A. R. Todd: Studies on Phosphorylation. I. Dibenzyl Chlorophosphonate as a Phosphorylating Agent. J. chem. Soc. (London) 1945, 382.Google Scholar
  4. 4.
    Baddiley, J., V.M. Clark, J. J. Michalski and A.R. Todd: Studies on Phosphorylation. V. The Reaction of Tertiary Bases with Esters of Phosphorous, Phosphoric and Pyrophosphoric Acids. A New Method of Selective Debenzylation. J. chem. Soc. (London) 1949, 815.Google Scholar
  5. 5.
    Baddiley, J., A. M. Michelson and A. R. Todd: Nucleotides. II. A Synthesis of Adenosine Triphosphate. J. chem. Soc. (London) 1949, 582.Google Scholar
  6. 6.
    Baer, E.: d, l-Glyceraldehyde-3-phosphoric Acid. In: Carter, Biochemical Preparations, Vol.1, p. 30. New York: Wiley & Sons. 1949.Google Scholar
  7. 7.
    Bailly, O.: The Phosphoric Esters of Glycerol. Ann. Chim. 6, 133 (1916) [Chem. Abstr. 10, 3069 (1916)].Google Scholar
  8. 8.
    Berger, L., M. W. Slein, S. P. Colowick and C. F. Cori: Isolation of Hexokinase from Baker’s Yeast. J. gen. Physiol. 29, 379 (1945/46).Google Scholar
  9. 9.
    Bernfeld, P., Cl. de Traz et Ch. Gautier: Recherches sur l’amidon. XXVII. Prescription pour la préparation de glucose-1-phosphate. Helv. chim. Acta 27, 843 (1944).Google Scholar
  10. 10.
    Blumenthal, E. and J. B. M. Herbert: The Mechanism of the Hydrolysis of Trimethyl Orthophosphate. Trans. Faraday Soc. 41, 611 (1945).Google Scholar
  11. 11.
    Brigl, P. u. H. Müller: Zur Synthese von Phosphorsäureestern. I. Mitt. Ber. dtsch. chem. Ges. 72, 2121 (1939).Google Scholar
  12. 12.
    Britton, H. T. S. and R. A. Robinson: The Use of the Glass Electrode in Titrimetric Work and Precipitation Reactions. The Application of the Principle of the Solubility Product to Basic Precipitates. Trans. Faraday Soc. 28, 531 (1932).Google Scholar
  13. 13.
    Brown, D.M., L. J. Haynes and A.R. Todd: Synthetic Ribonucleoside-2’-phosphates: a Correction. J. chem. Soc. (London) 1950, 408.Google Scholar
  14. 14.
    Cantor, S. M. and Q. P. Peniston: The Reduction of Aldoses at the Dropping Mercury Cathode: Estimation of the Aldehydo Structure in Aqueous Solutions. J. Amer. chem. Soc. 62, 2113 (1940).Google Scholar
  15. 15.
    Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladini: Isolation of the Coenzyme of the Galactose Phosphate-glucose Phosphate Transformation. J. biol. Chemistry 184, 333 (1950).Google Scholar
  16. 16.
    Caputto, R., L. F. Leloir and R. E. Trucco: Lactase and Lactose Fermentation in Saccharomyces Fragilis. Enzymologia 12, 350 (1948).Google Scholar
  17. 16a.
    Caputto, R., L. F. Leloir, R. E. Trucco, C. E. Cardini and A. C. Paladini: The Enzymatic Transformation of Galactose into Glucose Derivatives. J. biol. Chemistry 179, 497 (1949).Google Scholar
  18. 17.
    Cardini, C. E., A. C. Paladini, R. Caputto and L. F. Leloir: Uridine Diphosphate Glucose: the Coenzyme of the Galactose-glucose Phosphate Isomerization. Nature (London) 165, 191 (1950).Google Scholar
  19. 18.
    Cardini, C. E., A. C. Paladini, R. Caputto, L. F. Leloir and R. E. Trucco: The Isolation of the Coenzyme of Phosphoglucomutase. Arch. Biochemistry 22, 87 (1949).Google Scholar
  20. 19.
    Cohen, S. S. and D. B. McNair Scott: Formation of Pentose Phosphate from 6-Phosphogluconate. Science (New York) 111, 543 (1950).Google Scholar
  21. 20.
    Cohn, M.: Mechanisms of Cleavage of Glucose-1-phosphate. J. biol. Chemistry 180, 771 (1949).Google Scholar
  22. 21.
    Colowick, S. P.: Synthetic Mannose-1-phosphoric Acid and Galactose-1-phosphoric Acid. J. biol. Chemistry 124, 557 (1938).Google Scholar
  23. 22.
    ColowicK, S. P. and E. W. Sutherland: Polysaccharide Synthesis from Glucose by Means of Purified Enzymes. J. biol. Chemistry 144, 423 (1942).Google Scholar
  24. 23.
    Cori, C. F.: Phosphorylation of Glycogen and Glucose. Biol. Symposia 5, 131 (1941).Google Scholar
  25. 24.
    Cori, G. F., S. P. Colowick and G. T. Cori: The Isolation and Synthesis of Glucose-1-phosphoric Acid. J. biol. Chemistry 121, 465 (1937).Google Scholar
  26. 25.
    Courtois, J.: Les esters phosphoriques des oses et holosides. Bull. Soc. Chim. biol. 23, 133 (1941).Google Scholar
  27. Courtois, J.: Annales Fermentat. 6, 1 (1941).Google Scholar
  28. 26.
    Courtois, J.: Action de l’acide périodique sur l’acide hexose-diphosphorique. Bull. Soc. chim. France 9, 136 (1942).Google Scholar
  29. 27.
    Courtois, J.: Emplois analytiques de l’acide périodique dans la préparation et l’essai des médicaments. Produits pharm. 2, 5, 65 (1942).Google Scholar
  30. 28.
    Courtois, J.: Recherches sur le saccharosephosphate. I. Étude de l’ester phosphorique libéré par hydrolyse oxalique du saccharose-phosphate. Annales Fermentat. 8, 105 (1943).Google Scholar
  31. 29.
    Courtois, J. et M. Ramet: Recherches sur le diosephosphate. V. Sa formation par oxydation du fructose-6-phosphate. Bull. Soc. chim. France 11, 539 (1944).Google Scholar
  32. 30.
    Courtois, J. et M. Ramet: Les produits d’hydrolyse acide du saccharosephosphate. C. R. hebd. Séances Acad. Sci. 218, 360 (1944).Google Scholar
  33. 31.
    Courtois, J. et M. Ramet: Recherches sur le saccharosephosphate. II. Oxidation par l’acide périodique du glucosephosphate obtenu par l’hydrolyse acide du saccharosephosphate. Bull. Soc. Chim. biol. 27, 610 (1945).Google Scholar
  34. 32.
    Courtois, J. et M. Ramet: Recherches sur le saccharosephosphate. III. Étude de l’acide phosphogluconique dérivant du glucosephosphate libéré par l’hydrolyse du saccharosephosphate. Bull. Soc. Chim. biol. 27, 614 (1945).Google Scholar
  35. 33.
    Davoll, J., B. Lythgoe and A. R. Todd: Experiments on the Synthesis of Purine Nucleosides. XII. The Configuration at the Glycosidic Centre in Natural and Synthetic Pyrimidine and Purine Nucleosides. J. chem. Soc. (London) 1946, 833.Google Scholar
  36. 34.
    Desjobert, M. A.: L’hydrolise chimique du glucose-1-phosphate (Ester de Cori). Bull. Soc. Chim. biol. 32, 19 (1950).Google Scholar
  37. 35.
    Deuticke, H. J. u. S. Hollmann: Über das Vorkommen von Hexosediphosphorsäure im Skelettmuskel. Hoppe-Seyler’s Z. physiol. Chem. 258, 160 (1939).Google Scholar
  38. 36.
    Dickens, F.: Oxidation of Phosphohexonate and Pentose Phosphoric Acids by Yeast Enzymes. I. Oxidation of Phosphohexonate. II. Oxidation of Pentose Phosphoric Acids. Biochemic. J. 32, 1626 (1938).Google Scholar
  39. 37.
    Dickens, F.: Yeast Fermentation of Pentose Phosphoric Acids. Biochemie. J. 32, 1645 (1938).Google Scholar
  40. 38.
    Dickens, F. and G. E. Glock: Direct Oxidation of Glucose-6-phosphate by Animal Tissues. Nature (London) 166, 33 (1950).Google Scholar
  41. 39.
    Euler, H. v., P. Karrer u. B. Becker: Charakterisierung von Zuckerphosphorsäuren und Konstitution der Pentose-phosphorsäure aus Cozymase. Helv. chim. Acta 19, 1060 (1936).Google Scholar
  42. 40.
    Farrar, K. R.: Glucose-2-phosphate: its Preparation and Characterization by Hydrolysis Studies. J. chem. Soc. (London) 1949, 3131.Google Scholar
  43. 41.
    Fischer, E.: Über Phosphorsäureester des Methyl-glucosids und Theophyllinglucosids. Ber. dtsch. chem. Ges. 47, 3193 (1914).Google Scholar
  44. 42.
    Fischer, E.: Wanderung von Acyl bei den Glyceriden. Ber. dtsch. chem. Ges. 53, 1621 (1920).Google Scholar
  45. 43.
    Friedkin, M.: Desoxyribose-1-phosphate. II. The Isolation of Crystalline Desoxyribose-1-phosphate. J. biol. Chemistry 184, 449 (1950).Google Scholar
  46. 44.
    Friedkin, M. and H. M. Kalckar: Desoxyribose-1-phosphate. I. The Phosphorolysis and Resynthesis of Purine Desoxyribose Nucleoside. J. biol. Chemistry 184, 437 (1950).Google Scholar
  47. 45.
    Friedkin, M., H. M. Kalckar and E. Hoff-Jörgensen: Enzymatic Synthesis of Desoxyribose Nucleoside with Desoxyribose Phosphate Ester. J. biol. Chemistry 178, 527 (1949).Google Scholar
  48. 46.
    Gomori, G.: Hexosediphosphatase. J. biol. Chemistry 148, 139 (1943).Google Scholar
  49. 47.
    Grant, G. A.: The Metabolism of Galactose. I. Phosphorylation During Galactose Fermentation and its Relation to the Interconversion of Hexoses. Biochemic. J. 29, 1661 (1935).Google Scholar
  50. 48.
    Haas, E.: A Colorimetric Determination for Studies Involving Coenzymes. J. biol. Chemistry 155, 333 (1944).Google Scholar
  51. 49.
    Hanes, C. S.: The Breakdown and Synthesis of Starch by an Enzyme System from Pea Seeds. Proc. Roy. Soc. (London), Ser. B 128, 421 (1939).Google Scholar
  52. 30.
    Hanes, C. S.: The Reversible Formation of Starch from Glucose-1-phosphate Catalysed by Potato Phosphorylase. Proc. Roy. Soc. (London), Ser. B 129, 174 (1940).Google Scholar
  53. 51.
    Hanes, C. S. and F. A. Isherwood: Separation of the Phosphoric Ester on the Filter Paper Chromatogram. Nature (London) 164, 1107 (1949).Google Scholar
  54. 52.
    Hardegger, E. u. J. de Pascual: Glucoside und ß-1,3,4,6-Tetracetylglucose aus Triacetyl Glucosan-α-(1,2)-ß-(1,5)). Helv. chim. Acta 31, 281 (1948).Google Scholar
  55. 53.
    Hassel, G. and B. Ottar: The Structure of Molecules Containing Cyclohexane or Pyranose Rings. Acta ehem. Scand. 1, 929 (1947).Google Scholar
  56. 54.
    Hastings, A. B. and D. D. Van Slyke: The Determination of the Three Dissociation Constants of Citric Acid. J. biol. Chemistry 53, 269 (1922).Google Scholar
  57. 55.
    Hatano, J.: Über die partielle Hydrolyse der Rohrzucker-phosphorsäure zu d-Fructose und d-Glucose-phosphorsäure. Biochem. Z. 159, 175 (1925).Google Scholar
  58. 56.
    Helferich, B. u. W. Klein: Zur Acylwanderung. Liebigs Ann. Chem. 455, 173 (1927).Google Scholar
  59. 57.
    Helferich, B., A. Löwa, W. Nippe u. H. Riedel: Über die Einwirkung von Fermenten auf Schwefelsäure- und Phosphorsäure-ester der Zucker und ihrer Derivate. Hoppe-Seyler’s Z. physiol. Chem. 128, 141 (1923).Google Scholar
  60. 58.
    Helferich, B. u. A. Müller: Über den Methyl-glykosid eines neuen Anhydro-Zuckers; zugleich Beitrag zur Acyl-Wanderung bei partiell acylierter Glucose. Ber. dtsch. chem. Ges. 63, 2142 (1930).Google Scholar
  61. 59.
    Hirst, E. L., L. Hough and J. K. N. Jones: Quantitative Analysis of Mixtures of Sugars by the Method of Partition Chromatography. II. The Separation and Determination of Methylated Aldoses. J. chem. Soc. (London) 1949, 928.Google Scholar
  62. 60.
    Howard, G. A., B. Lythgoe and A. R. Todd: A Synthesis of Cytidine. J. chem. Soc. (London) 1947, 1052.Google Scholar
  63. 61.
    Jackson, E. L.: Periodic Acid Oxidation. Organic Reactions, Vol. 3, p. 341. New York: Wiley & Sons. 1944.Google Scholar
  64. 62.
    Jephcott, C. M. and R. Robison: Mannose Monophosphate. II. The Fermentation of Mannose by Dried Yeast. Biochemie. J. 28, 1844 (1934).Google Scholar
  65. 63.
    Jermyn, M. A. and F. A. Isherwood: Improved Separation of Sugars on the Paper Partition Chromatogram. Biochemic. J. 44, 402 (1949).Google Scholar
  66. 64.
    Josephson, K. u. S. Proffe: Über Umlagerungsreaktionen in der Kohlenhydratgruppe. Zur Kenntnis synthetischer Hexosephosphorsäureester. Liebigs Ann. Chem. 481, 91 (1930).Google Scholar
  67. 65.
    Josephson, K. u. S. Proffe: Zur Kenntnis synthetischer Hexosephosphorsäureester. II. Biochem. Z. 258, 147 (1933)-Google Scholar
  68. 66.
    Kalckar, H. M.: The Enzymatic Synthesis of Purine Nucleosides. J. biol. Chemistry 167, 477 (1947).Google Scholar
  69. 67.
    Kalckar, H. M.: The Biological Incorporation of Purines and Pyrimidines Into Nucleosides and Nucleic Acid. Biochim. biophys. Acta 4, 232 (1950).Google Scholar
  70. 68.
    Kiessling, W.: Über die Reindarstellung von Glucose-1-phosphorsäure (Cori-Ester). Biochem. Z. 298, 421 (1938).Google Scholar
  71. 69.
    King, E. J., R. R. McLaughlin and W. T. J. Morgan: The Methylation of Hexosemonophosphoric Ester. Biochemie. J. 25, 310 (1931).Google Scholar
  72. 70.
    Kjerulf-Jensen, K.: The Hexosemonophosphoric Acids Formed Within the Intestinal Mucosa During the Absorption of Fructose, Glucose and Galactose. Acta physiol. Scand. 4, 225 (1942).Google Scholar
  73. 71.
    Kjerulf-Jensen, K.: The Phosphate Esters Formed in the Liver Tissue of Rats and Rabbits During Assimilation of Hexoses and Glycerol. Acta physiol. Scand. 4, 249 (1942).Google Scholar
  74. 72.
    Komatzu, S. and R. Nodzu: Synthesis of the Phosphoric Acid Esters. II. Synthesis of Some Glucose Monophosphoric Esters and their Behaviour Towards Yeast. Mem. Coll. Sci., Kyoto Imp. Univ., Ser. A 7, 377 (1924) [Chem. Abstr. 19, 2811 (1925)].Google Scholar
  75. 73.
    Kosterlitz, H. W.: The Presence of a Galactose-phosphate in the Livers of Rabbits Assimilating Galactose. Biochemie. J. 31, 2217 (1937).Google Scholar
  76. 74.
    Kosterlitz, H. W.: Synthetic Galactose-1-phosphoric Acid. Biochemie. J. 33, 1087 (1939).Google Scholar
  77. 75.
    Kosterlitz, H. W.: The Structure of the Galactose-phosphate Present in the Liver During Galactose Assimilation. Biochemie. J. 37, 318 (1943).Google Scholar
  78. 76.
    Kosterlitz, H. W.: The Apparent Dissociation Constants of Galactose-1-phosphoric Acid. Biochemie. J. 37, 321 (1943).Google Scholar
  79. 75.
    Kosterlitz, H. W.: The Fermentation of Galactose and Galactose-1-phosphate. Biochemie. J. 37, 322 (1943).Google Scholar
  80. 78.
    Krahl, M. E. and C. F. Cori: The α-Glucose-1-phosphates. In: Carter: Biochemical Preparations, Vol. 1, p. 33. New York: Wiley & Sons. 1949.Google Scholar
  81. 79.
    Kumler, W. D. and J. J. Eiler: The Acid Strength of Mono and Diesters of Phosphoric Acid. The n-Alkyl Esters from Methyl to Butyl, the Esters of Biological Importance, and the Natural Guanidine Phosphoric Acids. J. Amer. chem. Soc. 65, 2355 (1943).Google Scholar
  82. 80.
    Kunitz, M. and M. R. McDonald: Crystalline Hexokinase (Heterophosphatase). J. gen. Physiol. 29, 393 (1946).Google Scholar
  83. 81.
    Lampson, G. P. and H. A. Lardy: Phosphoric Esters of Biological Importance. II. The Synthesis of Glucose-6-phosphate from 1,2-Isopropylidene-5,6-anhydro-D-glucofuranose. J. biol. Chemistry 181, 693 (1949).Google Scholar
  84. 82.
    Lampson, G. P. and H. A. Lardy: Phosphoric Esters of Biological Importance. III. The Synthesis of Propanediol Phosphate. J. biol. Chemistry 181, 697 (1949).Google Scholar
  85. 83.
    Lardy, H. A. and H. O. L. Fischer: Phosphoric Esters of Biological Importance. I. The Synthesis of Glucose-6-phosphatc. J. biol. Chemistry 164, 513 (1946).Google Scholar
  86. 84.
    Leloir, L. F., R. E. Trucco, C. E. Cardini, A. C. Paladini and R. Caputto: The Coenzyme of Phosphoglucomutase. Arch. Biochemistry 19, 339 (1948).Google Scholar
  87. 85.
    Leloir, L. F., R. E. Trucco, C. E. Cardini, A. C. Paladini and R. Caputto: The Formation of Glucose Diphosphate by Escherichia coli. Arch. Biochemistry 24, 65 (1949).Google Scholar
  88. 86.
    Levene, P. A. and C. C. Christman: Synthesis of 5-Phospho-d-Arabinose. J. biol. Chemistry 123, 607 (1938).Google Scholar
  89. 87.
    Levene, P. A. and A. Dmochowski: The Comparative Rates of Hydrolysis of Adenylic, Guanylic and Xanthylic Acids. J. biol. Chemistry, 93, 563 (1931).Google Scholar
  90. 88.
    Levene, P. A. and S. A. Harris: The Ribosephosphoric Acid from Xanthylic Acid. J. biol. Chemistry 95, 755 (1932).Google Scholar
  91. 89.
    Levene, P. A. and S. A. Harris: The Ribosephosphoric Acid from Xanthylic Acid. II. J. biol. Chemistry 98, 9 (1932).Google Scholar
  92. 90.
    Levene, P. A. and S. A. Harris: The Ribosephosphoric Acid from Yeast Adenylic Acid. J. biol. Chemistry 101, 419 (1933).Google Scholar
  93. 91.
    Levene, P. A., S. A. Harris and E. T. Stiller: d-Ribitol-5-Phosphoric Acid. J. biol. Chemistry 105, 153 (1934).Google Scholar
  94. 92.
    Levene, P. A. u. W. A. Jacobs: Über die Inosinsäure. Ber. dtsch. chem. Ges. 41, 2703 (1908).Google Scholar
  95. 93.
    Levene, P. A. u. W. A. Jacobs: Über die Inosinsäure. Ber. dtsch. chem. Ges. 44, 746 (1911).Google Scholar
  96. 94.
    Levene, P. A. and E. Jorpes: The Rate of Hydrolysis of Ribonucleotides. J. biol. Chemistry 81, 575 (1929).Google Scholar
  97. 95.
    Levene, P.A. and T. Mori: On Inosinic Acid. IV. The Structure of the Ribose Phosphoric Acid. J. biol. Chemistry 81, 215 (1929).Google Scholar
  98. 96.
    Levene, P. A. and A. L. Raymond: Hexosephosphates and Alcoholic Fermentation. J. biol. Chemistry 79, 621 (1928).Google Scholar
  99. 97.
    Levene, P. A. and A. L. Raymond: Hexosediphosphate. J biol. Chemistry 80, 633 (1928).Google Scholar
  100. 98.
    Levene, P. A. and A. L. Raymond: Glucoses-Phosphate, Glucose-6-Phosphate and their Bearing on the Structure of Robison’s Ester. J. biol. Chemistry 89, 479 (1930).Google Scholar
  101. 99.
    Levene, P. A. and A. L. Raymond: Hexosemonophosphate (Robison). Natural and Synthetic. J. biol. Chemistry 91, 751 (1931).Google Scholar
  102. 100.
    Levene, P. A. and A. L. Raymond: Hexosemonophosphates. Synthetic Robison Esters. J. biol. Chemistry 92, 757 (1931).Google Scholar
  103. 101.
    Levene, P. A. and A. L. Raymond: Hexosemonophosphates. Galactose-6-phosphate. J. biol. Chemistry 92, 765 (1931).Google Scholar
  104. 102.
    Levene, P. A. and A. L. Raymond: Derivatives of Monoacetone Xylose. J. biol. Chemistry 102, 317 (1933).Google Scholar
  105. 103.
    Levene, P. A. and A. L. Raymond: 3-Methyl Xylose and 5-Methyl Xylose. J. biol. Chemistry 102, 331 (1933).Google Scholar
  106. 104.
    Levene, P. A. and A. L. Raymond: Phosphoric Esters of Xylose and of 5-Methyl Monoacetone Xylose. Their Bearing on the Nature of the Pentose of Yeast Nucleic Acid. J. biol. Chemistry 102, 347 (1933).Google Scholar
  107. 105.
    Levene, P. A. and A. L. Raymond: Xylose Phosphoric Acids. II. J. biol. Chemistry 107, 75 (1934).Google Scholar
  108. 106.
    Levene, P. A., A. L. Raymond and A. Walti: A New Case of Walden Inversion in the Hexose Series. J. biol. Chemistry 82, 191 (1929).Google Scholar
  109. 107.
    Levene, P. A. and H. S. Simms: Lactone Formation from Mono and Dicarboxylic Sugar Acids. J. biol. Chemistry 65, 31 (1925).Google Scholar
  110. 108.
    Levene, P. A. and E. T. Stiller: The Synthesis of Ribose-5-phosphoric Acid. J. biol. Chemistry 104, 299 (1934)•Google Scholar
  111. 109.
    Lippich, F.: Die Reaktion zwischen Zucker und Cyankalium in ihren Beziehungen zum Problem der Zuckermodifikationen in wässeriger Lösung. Biochem. Z. 248, 280 (1932).Google Scholar
  112. 110.
    Lohmann, K.: Über die Isolierung verschiedener natürlicher Phosphorsäure-Verbindungen und die Frage ihrer Einheitlichkeit. Biochem. Z. 194, 306 (1928).Google Scholar
  113. 111.
    Lough, A. S. and V. E. Spencer: The Preparation of Calcium Glucosesphosphate from Dibrucine Glucoses-phosphate. J. org. Chemistry 3, 541 (1939).Google Scholar
  114. 112.
    Macleod, M. and R. Robison: The Application of the Iodimetric Method to the Estimation of Small Amounts of Aldoses. Biochemic. J. 23, 517 (1929).Google Scholar
  115. 113.
    Macleod, M. and R. Robison: The Hydrolysis of Hexosediphosphoric Ester by Bone Phosphatase. A New Fructose Monophosphate. Biochemic. J. 27, 286 (1933).Google Scholar
  116. 114.
    McCready, R. M. and W. Z. Hassid: The Preparation and Purification of Glucose-1-phosphate by the Aid of Ion Exchange Adsorbents. J. Amer. chem. Soc. 66, 560 (1944).Google Scholar
  117. 115.
    Mann, K. M. and H. A. Lardy: Phosphoric Esters of Biological Importance. V. The Synthesis of L- Sorbose-1-phosphate and L-Sorbose-6-phosphate. J. biol. Chemistry 187, 339 (1950).Google Scholar
  118. 116.
    Meagher, W. R. and W. Z. Hassid: Synthesis of Maltose-1-phosphate and D-Xylose-1-phosphate. J. Amer. chem. Soc. 68, 2135 (1946).Google Scholar
  119. 117.
    Meyerhof, O. u. K. Lohmann: Über die enzymatische Milchsäurebildung im Muskelextrakt. IV. Die Spaltung der Hexosemonophosphorsäuren. Biochem. Z. 185, 113 (1927).Google Scholar
  120. 118.
    Meyerhof, O., K. Lohmann und Ph. Schuster: Über die Aldolase, ein Kohlenstoff-verknüpfendes Ferment. I. Aldolkondensation von Dioxyacetonphosphorsäure mit Acetaldehyd. Biochem. Z. 286, 301 (1936).Google Scholar
  121. 119.
    Meyerhof, O., K. Lohmann und Ph. Schuster: Über die Aldolase, ein Kohlenstoff-verknüpfendes Ferment. II. Aldolkondensation von Dioxyacetonphosphorsäure mit Glyceraldehyd. Biochem. Z. 286, 319 (1936).Google Scholar
  122. 120.
    Meyerhof, O. u. J. Suranyi: Über die Dissoziationskonstanten der Hexosediphosphorsäure und Glycerinphosphorsäure. Biochem. Z. 178, 427 (1926).Google Scholar
  123. 121.
    Meyerhof, O. and J. R. Wilson: Studies on Glycolysis of Brain Preparations. IV. Arch. Biochemistry 17, 153 (1948).Google Scholar
  124. 122.
    Michelson, A. M. and A. R. Todd: Nucleotides. III. Mononucleotides Derived from Adenosine, Guanosine, Cytidine and Uridine. J. chem. Soc. (London) 1949, 2476.Google Scholar
  125. 123.
    Morgan, W. T. J.: The Chemistry of Hexosediphosphoric Acid. I. Biochemie. J. 21, 675 (1927).Google Scholar
  126. 124.
    Morgan, W. T. J. and R. Robison: Constitution of Hexose-diphosphoric Acid. II. The Dephosphorylated α- and ß-Methylhexosides. Biochemie. J. 22, 1270 (1928).Google Scholar
  127. 125.
    Neuberg, C.: Überführung der Fructose-diphosphorsäure in Fructose-monophosphorsäure. Biochem. Z. 88, 432 (1918).Google Scholar
  128. 126.
    Neuberg, C. u. O. Dalmer: Kristallisierte Salze einiger physiologisch wichtiger Zucker-Phosphorsäure-Verbindungen. Biochem. Z. 131, 188 (1922).Google Scholar
  129. 127.
    Neuberg, C. u. J. Leibowitz: Biochemische Darstellung eines Disaccharidmono-phosphorsäure-esters. Biochem. Z. 193, 237 (1928).Google Scholar
  130. 128.
    Neuberg, C. and H. Lustig: Preparation of D-Fructose- 1,6-diphosphate by Means of Baker’s Yeast. J. Amer. chem. Soc. 64, 2722 (1942).Google Scholar
  131. 129.
    Neuberg, C., H. Lustig and M. A. Rothenberg: Fructose- 1,6-diphosphoric Acid and Fructose-6-monophosphoric Acid. Arch. Biochemistry 3, 33 (1944).Google Scholar
  132. 130.
    Neuberg, C. u. H. Pollak: Über Kohlenhydratphosphorsäureester. I. Über Saccharosephosphorsäure. Biochem. Z. 23, 515 (1910).Google Scholar
  133. 131.
    Neuberg, C. u. H. Pollak: Über Phosphorsäure und Schwefelsäure von Kohlenhydraten. Biochem. Z. 26, 514 (1910).Google Scholar
  134. 132.
    Neuberg, G. u. S. Sabetay: Über lösliche und unlösliche Salze der Hexose-di-phosphorsäure. Biochem. Z. 161, 240 (1925).Google Scholar
  135. 133.
    Neuberg, C. u. M. Schener: Verbindungen der Fructose Diphosphorsäure. Biochem. Z. 249, 478 (1932).Google Scholar
  136. 134.
    Nodzu, R.: The Synthesis of the Phosphoric Acid Esters. III. Synthesis of Some Hexose-monophosphoric Acid Esters and their Behaviour Towards Yeast. J. Biochemistry 6, 31, 49 (1926) [Chem. Abstr. 21, 924 (1927)].Google Scholar
  137. 135.
    Pacsu, E.: Action of Titanium Tetrachloride on Derivatives of Sugars. II. Preparation of Tetra-acetyl-beta-normal-hexylglucoside and its Transformation to the Alpha Form. J. Amer. chem. Soc. 52, 2563 (1930).Google Scholar
  138. 136.
    Pacsu, E.: Action of Titanium Tetrachloride on Derivatives of Sugars. III. Transformation of Tetra-acetyl-beta-cyclohexyl-glucoside to the Alpha Form and the Preparation of Alpha-cyclohexylglucoside. J. Amer. chem. Soc. 52, 2568 (1930).Google Scholar
  139. 137.
    Pacsu, E.: Action of Titanium Tetrachloride on Derivatives of Sugars. IV. Transformation of Hepta-acetyl-beta-methyl-cellobioside to the Alpha Form and the Preparation of Alpha-methylcellobioside. J. Amer. chem. Soc. 52, 2571 (1930).Google Scholar
  140. 137a.
    Paladini, A. C., R. Caputto, L. F. Leloir, R. E. Trucco and C. E. Cardini: The Enzymatic Synthesis of Glucose-1,6-diphosphate. Arch. Biochemistry 23, 55 (1949).Google Scholar
  141. 138.
    Pany, J.: Über die Isolierung von Fructose-1-phosphorsäure aus biologischem Material. Hoppe-Seyler’s Z. physiol. Chem. 272, 273 (1942).Google Scholar
  142. 139.
    Partridge, S. M.: Filter-paper Partition Chromatography of Sugars. I. General Description and Application to the Qualitative Analysis of Sugars in Apple Juice, Egg White and Foetal Blood of Sheep. Biochemie. J. 42, 238 (1948).Google Scholar
  143. 140.
    Patwardhan, V. R.: Mannose Monophosphate. III. Phosphomannonic Acid and its Lactones. Biochemie. J. 28, 1854 (1934).Google Scholar
  144. 141.
    Percival, E. E. and E. G. V. Percival: Carbohydrate Phosphoric Esters. I. The Alkaline Hydrolysis of α-Methylglucopyranoside-6-phosphate, Methylglucofuranoside-3-phosphates and Iso-propylidene Glucofuranose-3- and -6-phosphates. J. chem. Soc. (London) 1945, 874.Google Scholar
  145. 142.
    Pigman, W. W. and R. M. Goepp, Jr.: Chemistry of the Carbohydrates. New York: Academic Press. 1948.Google Scholar
  146. 143.
    Plaut, G. W. E., S. A. Kuby and H. A. Lardy: Systems for the Separation of Phosphoric Esters by Solvent Distribution. J. biol. Chemistry 184, 243 (1950).Google Scholar
  147. 144.
    Posternak, T.: Synthesis of α- and ß-Glucose- 1,6-diphosphate. J. biol. Chemistry 180, 1269 (1949).Google Scholar
  148. 145.
    Posternak, T.: Synthesis of α-D-Glucose-1-phosphate and α-D-Galactose-1-phosphate. J. Amer. chem. Soc. 72, 4824 (1950).Google Scholar
  149. 145a.
    Posternak, T.: Sur le phosphore des amidons. Helv. chim. Acta 18, 1351 (1935).Google Scholar
  150. 146.
    Potter, A. L., J. C. Sowden, W. Z. Hassid and M. Doudoroff: α-L-Glycose-1-phosphate. J. Amer. chem. Soc. 70, 1751 (1948).Google Scholar
  151. 147.
    Ramet, M.: Recherches sur les Esters Phosphoriques des Sucres. Contribution a l’étude de leur Oxydation par l’acide périodique. Thèse, Faculté Pharm., Paris (1945).Google Scholar
  152. 148.
    Raymond, A. L.: Hexosemonophosphates. Glucoses-4-phosphate. J. biol. Chemistry 113, 375 (1936).Google Scholar
  153. 149.
    Raymond, A. L. and P. A. Levene: Synthetic Hexosephosphates and their Phenylhydrazine Derivatives. J. biol. Chemistry 83, 619 (1929).Google Scholar
  154. 150.
    Reeves, R. E.: The Shape of Pyranoside Rings. J. Amer. chem. Soc. 72, 1499 (1950).Google Scholar
  155. 151.
    Reich, W. S.: A New Method of Phosphorylation. Nature (London) 157, 133 (1946).Google Scholar
  156. 152.
    Reithel, F. J.: ß-D-Galactose-1-(barium phosphate). J. Amer. chem. Soc. 67, 1056 (1945).Google Scholar
  157. 153.
    Reithel, F. J. and C. K. Claycomb: The Synthesis of Derivatives of Glucose-4-phosphoric Acid. J. Amer. chem. Soc. 71, 3669 (1949).Google Scholar
  158. 154.
    Repetto, O. M., R. Caputto, G. E. Cardini, L. F. Leloir and A. C. Paladini: La Sintesis del Glucosa Difosfato. Ciencia e Invest. (Buenos Aires) 5, 175. (1949); An. Asoc. quim. argent. 37, 187 (1949).Google Scholar
  159. 155.
    Robinson, R. A.: An Aspect of the Biochemistry of the Sugars. Nature (London) 120, 44 (1927).Google Scholar
  160. 156.
    Robison, R.: Hexosemonophosphoric Esters: Mannose-monophosphate. Biochemic. J. 26, 2191 (1932).Google Scholar
  161. 157.
    Robison, R.: The Significance of Phosphoric Esters in Metabolism. New York: University Press. 1932.Google Scholar
  162. 158.
    Robison, R. and E. J. King: Hexosemonophosphoric Esters. Biochemic. J. 25, 323 (1931).Google Scholar
  163. 159.
    Robison, R. u. M. G. Macfarlane: Biologisch wichtige Derivate der Zucker, Zwischen- und Endprodukte beim Abbau: b) Phosphorhaltige. In: Bamann-Myrbäck: Methoden der Fermentforschung, S. 296. Leipzig: G. Thieme. 1941.Google Scholar
  164. 160.
    Robison, R., M. G. Macfarlane and A. Tazelaar: A New Phosphoric Ester Isolated from the Products of Yeast Juice Fermentation. Nature (London) 142, 114 (1938).Google Scholar
  165. 161.
    Robison, R. and W. T. J. Morgan: Trehalose Monophosphoric Ester Isolated from the Products of Fermentation of Sugars with Dried Yeast. Biochemie. J. 22, 1277 (1928).Google Scholar
  166. 162.
    Robison, R. and W. T. J. Morgan: The Phosphoric Esters of Alcoholic Fermentation of Sugars with Dried Yeast. Biochemie. J. 24, 119 (1930).Google Scholar
  167. 163.
    Roe, J. H.: A Colorimetric Method for the Determination of Fructose in Blood and Urine. J. biol. Chemistry 107, 15 (1934).Google Scholar
  168. 164.
    Schlubach, H.H. u. H. E. Bartels: Über das β-Methyl-fructofuranosid. Liebigs Ann. Chem. 541, 76 (1939).Google Scholar
  169. 165.
    Slein, M. W.: Phosphomannose Isomerase. J. biol. Chemistry 186, 753 (1950).Google Scholar
  170. 166.
    Smythe, C.V.: Phosphoric Acid Esters from Yeast Extract. The Isolation of a Crystalline Calcium Salt Consisting of an Equimolar Mixture of Glucose-monophosphate and Glycerophosphate. J. biol. Chemistry 117, 135 (1937).Google Scholar
  171. 167.
    Smythe, C.V.: An Improved Method of Preparing Hexosemonophosphate from Yeast Extract. J. biol. Chemistry 118, 619 (1937).Google Scholar
  172. 168.
    Stepanov, A. V. and B. N. Stepanenko: Active Form of Simple Sugars. IV. Reaction Capacity of Glucose-6-phosphate (Comparative Study of the Addition of Hydrocyanic Acid to Glucose-6-phosphate and to Glucose). Biokhimiya 2, 917 (1937) [Chem. Abstr. 32, 2513 (1938)].Google Scholar
  173. 169.
    Stepanov, A. V. and B. N. Stepanenko: The Active Form of Simple Sugars. VI. The Reactivity of Fructose-1-phosphate. Biokhimiya 5, 198 (1940) [Chem. Abstr. 35, 1385 (1941)].Google Scholar
  174. 170.
    Stepanov, A. V. and B. N. Stepanenko: Active Form of Simple Sugars. VII. Reactivity of Fructose-1,6-diphosphate. Biokhimiya 5, 567 (1940) [Chem. Abstr. 35, 4742 (1941)].Google Scholar
  175. 171.
    Sumner, J. B. and F. G. Somers: Preparation of Glucose-1-phosphate. Arch. Biochemistry 4, 11 (1944).Google Scholar
  176. 172.
    Sutherland, E. W., T. Posternak and C. F. Cori: The Mechanism of Action of Phosphoglucomutase and Phosphoglyceric Acid Mutase. J. biol. Chemistry 179, 501 (1949).Google Scholar
  177. 173.
    Sutherland, E. W., M. Cohn, T. Posternak and C. F. Cori: The Mechanism of the Phosphoglucomutase Reaction. J. biol. Chemistry 180, 1285 (1949).Google Scholar
  178. 174.
    Sutherland, E. W., T. Posternak and C. F. Cori: Mechanism of the Phosphoglyceric Mutase Reaction. J. biol. Chemistry 181, 153 (1949).Google Scholar
  179. 175.
    Swanson, M. A.: Phosphatases of Liver. J. biol. Chemistry 184, 647 (1950).Google Scholar
  180. 176.
    Tanko, B. and R. Robison: The Hydrolysis of Hexosediphosphoric Ester by Bone Phosphatase. II. a) The Participation of Phosphohexokinase. b) The Isolation of Pure Fructose-1-phosphate. Biochemic. J. 29, 961 (1935).Google Scholar
  181. 177.
    Totton, E. L. and H. A. Lardy: Phosphoric Esters of Biological Importance. IV. The Synthesis and Biological Activity of D-Tagatose-6-phosphate. J. biol. Chemistry 181, 701 (1949).Google Scholar
  182. 178.
    Trucco, R. E., R. Caputto, L. F. Leloir and N. Mittelman: Galactokinase. Arch. Biochemistry 18, 137 (1948).Google Scholar
  183. 279.
    Van Slyke, D.D.: On the Measurement of Buffer Values and on the Relationship of Buffer Value to the Dissociation Constant of the Buffer and the Concentration and Reaction of the Buffer Solution. J. biol. Chemistry 52, 525 (1922).Google Scholar
  184. 180.
    Warburg, O. u. W. Christian: Über ein neues Oxydationsferment und sein Absorptionsspektrum. Biochem. Z. 254, 438 (1932).Google Scholar
  185. 181.
    Abbau von Robison-Ester durch Triphospho-pyridin-nucleotid. Biochem. Z. 292, 287 (1932).Google Scholar
  186. 182.
    Warburg, O., W. Christian u. A. Griese: Wasserstoffübertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochem. Z. 282, 206 (1935).Google Scholar
  187. 183.
    Weibull, C.: The Purification of Potato Phosphorylase and of Glucose-i-phosphate (Cori Ester). Ark. Kem., Mineral. Geol., B 21, No. 2 (1945).Google Scholar
  188. 184.
    Wilkinson, J. F.: The Pathway of the Adaptive Fermentation of Galactose by Yeast. Biochemic. J. 44, 460 (1949).Google Scholar
  189. 185.
    Wolfrom, M. L. and D. E. Pletcher: The Structure of the Cori Ester. J. Amer. chem. Soc. 63, 1050 (1941).Google Scholar
  190. 186.
    Wolfrom, M. L., C. S. Smith, D. E. Pletcher and A. E. Brown: The β-Form of the Cori Ester (d-Glucopyranose-1-phosphate). J. Amer. chem. Soc. 64, 23 (1942).Google Scholar
  191. 187.
    Young, W. J.: Über die Zusammensetzung der durch Hefepreßsaft gebildeten Hexosephosphorsäure. Biochem. Z. 32, 178 (1911).Google Scholar
  192. 188.
    Zemplen, G.: Neuere Richtungen der Glycosid-Synthese. Fortschr. Chem. organ. Naturstoffe 1, 1 (1938).Google Scholar
  193. 189.
    Zervas, L.: A New Phosphorylation Method. 1-Glucosylphosphate. Naturwiss. 27, 317 (1939) [Chem. Abstr. 33, 7279 (1939)].Google Scholar

Copyright information

© Wien · Springer-Verlag 1951

Authors and Affiliations

  • L. F. Leloir
    • 1
  1. 1.Buenos AiresArgentina

Personalised recommendations