Advertisement

Abstract

Purines and pyrimidines constitute some of the most essential building stones of the living organism. They are found mainly as complexes bound to pentoses, partly as low- and partly as high-molecular compoands. Free purines occur predominantly as excretion products or as deposits, usually under or on the integuments of vertebrates and invertebrates.

Keywords

Xanthine Oxidase Ammonium Sulfate Adenosine Deaminase Orotic Acid Purine Nucleoside Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams, A. and H. Klenow, Phosphoribomutase and Enzymatic Preparation of Ribose-I-Phosphate. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 153 (1951).Google Scholar
  2. 2.
    Abrams, R.: Synthesis of Nucleic Acid Purines in the Sea Urchin Embryo. Exp. Cell Research 2, 235 (1951).CrossRefGoogle Scholar
  3. 3.
    Abrams, R.: Purine Synthesis in a Purine-requiring Yeast Mutant. J. Amer. chem. Soc. 73, 1888 (1951).CrossRefGoogle Scholar
  4. 4.
    Abrams, R. and J. M. Goldinger: Utilization of Purines for Nucleic Acid Synthesis in Bone Marrow Slices. Arch. Biochemistry 30, 26, (1951).Google Scholar
  5. 5.
    Abrams, R., E. Hammarstenand D. Shemin: Glycine as a Precursor of Purines in Yeast. J. biol. Chemistry 173, 429 (1948).Google Scholar
  6. 6.
    Balis, M. E.: Utilization of Guanine by the Rat. (Abstract of Paper presented at Amer. chem. Soc. Meeting, April, 1951.)Google Scholar
  7. 7.
    Balis, M. E., G. B. Brown, G. B. Elion, G. H. Hitchingsand H. Vander Weri’f: On the Interconversion of Purines by Lactobacillus casei. J. biol. Chemistry 288, 217 (1951).Google Scholar
  8. 8.
    Ball, E. G.: Xanthine Oxidase: Purification and Proper.ies. J. biol. Chemistry 128, 51 (1939).Google Scholar
  9. 9.
    Bergström, S., H. Arvidson, E. Hammarsten, N. A. Eliasson, P. Reichardand H. V Ubisch: Orotic Acid, a Precursor of Pyrimidines in the Rat. J. biol. Chemistry 177, 495 (1949)Google Scholar
  10. 10.
    Bielacaowsay, F. W. Klein: Experimentelle Studien über den Nucleinstoffwechsel. XXVII. Mitt. ‘Ober die fermentative Aufspaltung der Thymusnucleinsaure mit Nucleotidase aus Darmschleimhaut. Die Isolierung der Nucleoside der Thymusnucleinsaure. Hoppe-Seyler’s Z. physiol. Chem. 207, 202 (1932).Google Scholar
  11. 11.
    Brady, T. G.: Isolation of Adenine-Desoxyriboside from Thymusnucleic Acid. Biochemic. J. 35, 855 (2942)Google Scholar
  12. 12.
    Brady, T. G.: Adenosine Deaminase. Biochemic. J. 36, 478 (1942).Google Scholar
  13. 13.
    Brown, G. B.: Biosynthesis of Nucleic Acids in the Mammal. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 517 (1950).Google Scholar
  14. 14.
    Brown, G. B., P. M. Roll, A. A. Plentland L. F. Cavalieri: The Utilization of Adenine for Nucleic Acid Synthesis and as a Precursor of Guanine. J. biol. Chemistry 172, 469 (1948).Google Scholar
  15. 15.
    Buchanan, J. M.: Biosynthesis of Purines. J. cellular comparat. Physiol. 38, Suppl. 1, 143 (2952).Google Scholar
  16. 16.
    Caputto, R.: The Enzymatic Synthesis of Adenylic Acid; Adenosinekinase. J. biol. Chemistry 189, 801 (1951).Google Scholar
  17. 17.
    Cardini, C. E., A. C. Paladini, R. Caputto, L. F. Leloirand R. E. Trucco: The Isolation of the Coenzyme of Phosphoglucomutase. Arch. Biochemistry 22, 87 (1949)Google Scholar
  18. 18.
    Carter, C. E.: Partial Purification of a Non-phosphorylytic Uridine Nucleosidase from Yeast. J. Amer. chem. Soc. 73, 1508 (1951).CrossRefGoogle Scholar
  19. 19.
    Chargaff, E. and J. Kream: Procedure for the Study of Certain Enzymes in Minute Amounts and its Application to the Investigation of Cytosine Deaminase. J. biol. Chemistry 175, 993 (1948).Google Scholar
  20. 20.
    Clark, D. A., J. Davoll, F. S. Philipsand G. B. Brown: Vasodepressor Activity of Adenosine, 2-Chloro-Adenosine and Related Nucleosides. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 286 (2952).Google Scholar
  21. 21.
    Clark, V. M. and H. M. Kalckar: A Synthesis of Adenine Labelled with 14C. J. chem Soc. ( London ) 1950, 1029.Google Scholar
  22. 22.
    Cohen, S. S. and D. B. Mcnair Scott: Formation of Pentose Phosphate from 6-Phosphogluconate. Science (New York) III, 543 (1950).CrossRefGoogle Scholar
  23. 23.
    Cori, C. F., G. T. Coriand A. A. Green: Crystalline Muscle Phosphorylase. III. Kinetics. J. biol. Chemistry 151, 39 (1943)Google Scholar
  24. 24.
    Cori, G. T., S. P. Colowickand C. F. Cori: The Enzymatic Conversion of Glucose-I-Phosphoric Ester to 6-Ester in Tissue Extracts. J. biol. Chemistry 124, 543 (1938).Google Scholar
  25. 25.
    Davis, A. R., E. B. Newtonand S. R. Benedict: The Combined Uric Acid in Beef Blood. J. biol. Chemistry 54, 595 (1922).Google Scholar
  26. 26.
    Davoll, J., B. Lythgoeand A. R. Todd: Experiments on the Synthesis of Purine Nucleosides. XIX. A Synthesis of Adenosine. J. Chem Soc. ( London ) 1948, 967Google Scholar
  27. 27.
    Deutsch, W. R. Laser: Experimentelle Studien über den Nucleinstoffwechsel. XIX. Mitt. Zur Kenntnis der Nucleosidase. Verhalten einer Nucleosidase aus Rinderknochenmark zu einem Spaltprodukt der Thymusnucleinsäure. Hoppe-Seyler’s Z. physiol. Chem. 186. 1 (1929).Google Scholar
  28. 28.
    Dickens, F.: Oxidation of Phosphohexonate and Pentose Phosphoric Acids by Yeast Enzymes. I. Oxidation of Phosphohexonate. II. Oxidation of Pentose Phosphoric Acids. Biochemie. J. 32, 1626 (5938).Google Scholar
  29. 28a.
    Dimroth, K., L. Jaenicke and D. Heinzel: Die Spaltung der Pentosenucleinsäure der Hefe mit Bleihydroxyd. (I. Mitt. über Nucleinsäuren.) Liebigs Ann. Chem. 566, 206 (1950).Google Scholar
  30. 29.
    Dische, Z.: Phosphorylierung der in Adenosin enthaltenen d-Ribose and nachfolgender Zerfall des Esters unter Triosephosphatbildung im Blute. Naturwiss. 26, 252 (1938).CrossRefGoogle Scholar
  31. 30.
    Doudoroff, M.: Studies on the Phosphorolysis of Sucrose. J. biol. Chemistry 151, 351 (2943)Google Scholar
  32. 31.
    Doudoroff, M., H. A. Barkerand W. Z. Hassid: Studies with Bacterial Sucrose Phosphorylase. I. The Mechanism of Action of Sucrose Phosphorylase as a Glucose-Transferring Enzyme (Transglucosidase). J. biol. Chemistry 168, 725 (1947)Google Scholar
  33. 32.
    Drury, A. N. and A. Szent-Gysrgyi: The Physiological Activity of Adenine Compoands with Especial Reference to their Action Upon the Mammalian Heart. J. Physiology 68, 213 (1929).Google Scholar
  34. 33.
    Falconer, R. and J. M. Gulland: The Constitution of the Purine Nucleosides. VIII. Uric Acid Riboside. J. chem. Soc. ( London ) 1939, 1369.Google Scholar
  35. 34.
    Forrest, H. S. and A. R. Todd: Nucleotides. V. Riboflavin-5’-Phosphate. J. chem. Soc. ( London ) 1950, 3295.Google Scholar
  36. 35.
    Friedkin, M.: Desoxyribose-z-Phosphate. II. The Isolation of Crystalline Desoxyribose-I-Phosphate. J. biol. Chemistry 184, 449 (1950).Google Scholar
  37. 36.
    Friedkin, M.: Azaguanine, Ribose-i-phosphate and Desoxyribose-I-Phosphate. Reported Reaction at Symposium on Phosphorus Metabolism I, McCollum-Pratt Inst., Johns Hopkins Univ., June, 1951.Google Scholar
  38. 37.
    Friedkin, M.: Enzymatic Synthesis of Desoxyxanthinosine by the Action of Xanthinosine Phosphorylase in Mammalian Tissue. J. Amer. chem. Soc. 74, 112 (1952).CrossRefGoogle Scholar
  39. 38.
    Friedkin, M. and H.M. Kalckar: Desoxyribose-I-phosphate. I. The Phosphorolysis and Resynthesis of Purine Desoxyribose Nucleoside. J. biol. Chemistry 184, 437 (1950)Google Scholar
  40. 39.
    Friedkin, M. and D. Roberts: Desoxyribose-i-Phosphate in Nucleic Acid Synthesis. Formation of Thymidine. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 184 (1951).Google Scholar
  41. 40.
    Furst, S. S. and G. B. Brown: On the Rôle of Glycine and Adenine as Precursors of Nucleic Acid Purines. J. biol. Chemistry 191, 239 (1951).Google Scholar
  42. 41.
    Furst, S. S., P. M. Rom. and G. B. Brown: On the Renewal of the Purines of the Desoxypentose and Pentose Nucleic Acids. J. biol. Chemistry 183, 251 (1950).Google Scholar
  43. 42.
    Goldwasser, E. (unpublished).Google Scholar
  44. 43.
    Greenberg, G. R.: De Novo Synthesis of Hypoxanthine via Inosine 5-phosphate. J. biol. Chemistry 190, 611 (1951).Google Scholar
  45. 44.
    Hammarsten, E., P. Reichardand E. Saluste: Pyrimidine Nucleosides as Precursors of Pyrimidines in Polynucleotides. J. biol. Chemistry 183, 105 (1950).Google Scholar
  46. 45.
    Hanes, C. S. and F. A. Isenawoon: Separation of the Phosphoric Esters on the Filter Paper Chromatogram. Nature (London) 164, 1107 (1949)CrossRefGoogle Scholar
  47. 46.
    Heppel, L. A.: (unpublished).Google Scholar
  48. 47.
    Heppel, L. A. and R. J. Hilmoe: Purification and Properties of 5-Nucleotidase. J. biol. Chemistry 188, 665 (1951).Google Scholar
  49. 48.
    Hoff- Jorgensen, E.: A Microbiological Assay of Deoxyribonucleosides and Deoxyribonucleic Acids. Biochemie. J. 50, 400 (1952).Google Scholar
  50. 49.
    Ikoff-Jörgensen, E., M. friedkinand H. M. Kalckar: Desoxyribose-zPhosphate. III. Comparison of Microbiological and Spectrophotometric Estimations of Enzymatically Produced Purine Desoxyribose Nucleoside. J. biol. Chemistry 184, 461 (1950).Google Scholar
  51. 50.
    Hoffmann, C. E. and L. A. Manson: Products of Desoxyribose Nucleosides Degradation by Escherichia coli. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 198 (1951).Google Scholar
  52. 51.
    Horecker, B. L. and P. Z. Smyrniotis: The Enzymatic Production of Ribose-5-Phosphate from 6-Phosphogluconate. Arch. Biochemistry 29, 232 (1950) .Google Scholar
  53. 52.
    Kalckar, H. M.: Differential Spectrophotometry of Purine Compoands by Means of Specific Enzymes. I. Determination of Hydroxypurine Compoands. J. biol. Chemistry 167, 429 (1947).Google Scholar
  54. 53.
    Kalckar, H. M.: Differential Spectrophotometry of Purine Compoands by Means of Specific Enzymes. II. Determination of Adenine Compoands. J. biol. Chemistry 167. 445 (1947)Google Scholar
  55. 54.
    Kalckar, H. M.: Differential Spectrophotometry of Purine Compoands by Means of Specific Enzymes. III. Studies of the Enzymes of Purine Metabolism. J. biol. Chemistry 167, 461 (1947).Google Scholar
  56. 55.
    Kalckar, H. M.: The Enzymatic Synthesis of Purine Ribosides. J. biol. Chemistry 167, 477 (1947)Google Scholar
  57. 56.
    Kalckar, H. M.: The Biological Synthesis of Purine Compoands. Symposia of the Society for Experimental Biology, Number 1, p. 38, Nucleic Acid. 1947.Google Scholar
  58. 57.
    Kalckar, H. M.: The Biological Incorporation of Purines and Pyrimidines into Nucleosides and Nucleic Acid. Biochim. et Biophys. Acta 4, 232 (1950).Google Scholar
  59. 58.
    Kalckar, H. M.: Enzymatic Reactions in the Synthesis of Purine Compoands In: The Harvey Lectures. Springfield, III.: Charles C. Thomas. 1949, 1950Google Scholar
  60. 58.
    Kalckar, H. M.: Enzymatic Reactions in the Synthesis of Purine Compoands In: The Harvey Lectures. Springfield, III.: Charles C. Thomas. 1949, 1950Google Scholar
  61. 60.
    Kalckar, H. M. and O. H. Lowry: The Relationship Between Traumatic Shock and the Release of Adenylic Acid Compoands. Amer. J. Physiol. 149, 240 (1947)Google Scholar
  62. 60.
    Kalckar, H. M. and O. H. Lowry: The Relationship Between Traumatic Shock and the Release of Adenylic Acid Compoands. Amer. J. Physiol. 149, 240 (1947)Google Scholar
  63. 61a.
    Kenner, G. W.: The Chemistry of Nucleotides. Fortschr. Chem. organ. Naturstoffe 8, 96 (1951).Google Scholar
  64. 62.
    Kerr, S. E., K. Seraidarianand G. B. Brown: On the Utilization of Purines and Their Ribose Derivatives by Yeast. J. biol. Chemistry 188, 207 (1951).Google Scholar
  65. 63.
    Klein, W.: Experimentelle Studien über den Nucleinstoffwechsel. XXXVII. Über Nucleosidase. Hoppe-Seyler’s Z. physiol. Chem. 231, 125 (1935)Google Scholar
  66. 64.
    Klein, W.: Experimentelle Studien über den Nucleinstoffwechsel. XXXIII. Über Adenin-desoxyribosid. Hoppe-Seyler’s Z. physiol. Chem. 224, 244 (1934).Google Scholar
  67. 65.
    Klein, W. S. J. Thannhauser: Experimentelle Studien über den Nucleinstoffwechsel, XXXV. Die Pyrimidinnucleotide aus Thymusnucleinsäure. Hoppe-Seyler’s Z. physiol. Chem. 231, 96 (1935).Google Scholar
  68. 66.
    Klenow, H. (unpublished).Google Scholar
  69. 67.
    Kornberg, A. and W. E. Pricer, Jr.: Enzymatic Phosphorylation of Adenosine and 2,6-Diaminopurine Riboside. J. biol. Chemistry (1951) (in press).Google Scholar
  70. 68.
    Leloir, L. F.: The Enzymatic Transformation of Uridine Diphosphate Glucose Into a Galactose Derivative. Arch. Biochem. and Biophys. 33, 186 (1951).CrossRefGoogle Scholar
  71. 68a.
    Leloir, L. F.: Sugar Phosphates. Fortschr. Chem. organ. Naturstoffe 8, 47 (1951).Google Scholar
  72. 69.
    Le Page, G. A. and C. Heidelberger: Incorporation of Glycine-2-C“ Into Proteins and Nucleic Acids of the Rat. J. biol. Chemistry 188, 593 (1951).Google Scholar
  73. 70.
    Lipmann, F.: Fermentation of Phosphogluconic Acid. Nature (London) 138, 588 (1936).CrossRefGoogle Scholar
  74. 71.
    Lowry, O. H. and J. A. Lopez: The Determination of Inorganic Phosphate in the Presence of Labile Phosphate Esters. J. biol. Chemistry 162, 421 (1946).Google Scholar
  75. 72.
    Lutwak-Mann, C.: The Decomposition of Adenine Compoands by Bacteria. Biochemie. J. 30, 1405 (1936).Google Scholar
  76. 73.
    Lythgoe, B. and A. R. Todd: Structure and Synthesis of Nucleotides. Symposia Soc. exp. Biology 1, 15 (1947).Google Scholar
  77. 74.
    Mcnair Scott, D. B. and S. S. Comm: Enzymatic Formation of Pentose Phosphate from 6-Phosphoglnconate. J. biol. Chemistry 188, 509 (1951).Google Scholar
  78. 75.
    Mcnvrr, W. S.: The Exchange Between Free Purines and Pyrimidines and the Aglucones of Deoxyribosyl Purines and Deoxyribosyl Pyrimidines. Nature (London) 166, 444 (1950)Google Scholar
  79. 75.
    Mcnvrr, W. S.: The Exchange Between Free Purines and Pyrimidines and the Aglucones of Deoxyribosyl Purines and Deoxyribosyl Pyrimidines. Nature (London) 166, 444 (1950)Google Scholar
  80. 76a.
    Mcnvrr, W. S.: Nucleosides and Nucleotides as Growth Substances for Microorganisms. Fortschr. Chem. organ. Naturstoffe 9, 401 (1952).Google Scholar
  81. 77.
    Manson, L. A. and J. O. Lampen: The Metabolism of Hypoxanthine Desoxyriboside in Animal Tissues. J. biol. Chemistry 191, 95 (1951).Google Scholar
  82. 78.
    Manson, L. A. and J. O. Lampen: Enzymatic Degradation of Thymidine. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 224 (1949).Google Scholar
  83. 79.
    Manson, L. A. and J. O. Lampen: Metabolism of Desoxyribosides in Escherichia coli. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 397 (1950).Google Scholar
  84. 80.
    Marrian, D. H., V. L. Spicer, M. E. Balisand G. B. Brown: Purine Incorporation Into Pentose Nucleotides of the Rat. J. biol. Chemistry 189, 533 (1951).Google Scholar
  85. 80a.
    a. Michelson, A. M., W. Drell and H. K. Mitchell: A New Ribose Nucleoside from Neurospora: “Orotidine”. Proc. Nat. A.ad. Sc. (U. S. A.) 37, 396 (1951).CrossRefGoogle Scholar
  86. 81.
    Mitchell, H. K. and W. D. Mcelroy: Adenosine Deaminase from Aspergillus Oryzae. Arch. Biochemistry 10, 351 (1946).Google Scholar
  87. 82.
    Ostern, P., T. Baranovski U. J. Terszakowec: Über die Phosphorylierung des Adenosins durch Hefe and die Bedeutung dieses Vorganges für die alkoholische Gärung. Hoppe-Seyler’s Z. physiol. Chem. 251, 258 (1938).Google Scholar
  88. 83.
    Plentl, A. A. and R. Schoenheimer: Studies in the Metabolism of Purines and Pyrimidines by Means of Isotopic Nitrogen. J. biol. Chemistry 153, 203 (1944)Google Scholar
  89. 84.
    Price, V. (unpublished).Google Scholar
  90. 85.
    Racker, E.: Enzymatic Formation and Breakdown of Pentose Phosphate. Federat. Proc. (Amer. Soc. exp. Biol.) 7, 180 (1948).Google Scholar
  91. 86.
    Racker, E.: Enzymatic Synthesis of Deoxypentose Phosphate. Nature (London) 167, 408 (1951).CrossRefGoogle Scholar
  92. 87.
    Reichard, P. and B. Estborn: Utilization of Desoxyribosides in the Synthesis of Polynucleotides. J. biol. Chemistry 288, 839 (1951)Google Scholar
  93. 88.
    Roll, P. M. and I. Weliky:.Utilization of Purine Nucleotides for Nucleic Acid Synthesis by the Rat. Federat. Proc. (Amer. Soc. exp. Biol.) 20, 238 (1951).Google Scholar
  94. 89.
    Rowen, J. W. and A. Kornberg: Phosphorolysis of Nicotinamide Riboside. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 240 (1951).Google Scholar
  95. 90.
    Sable, H. Z. and H. M. Kalckar(unpublished).Google Scholar
  96. 91.
    Schaedel, M. L., M. J. Waldvogeland F. Schlenk: The Specificity of Adenosine Deaminase and Purine Nucleosidase. J. biol. Chemistry 171, 135 (1947)Google Scholar
  97. 92.
    Schlenk, F.: Chemistry and Enzymology of Nucleic Acids. Adv. Enzymology 9, 455 (1949)Google Scholar
  98. 93.
    Schlenk, F. and M. J. Waldvogel: Studies on the Metabolism of Some Ribose Derivatives. Arch, Biochemistry 12, 181 (1947).Google Scholar
  99. 94.
    Schmidt, G.: Über fermentative Desaminierung in Muskel. Hoppe-Seyler’s Z. physiol. Chem. 179, 243 (1928).Google Scholar
  100. 95.
    Schmidt, G.: Über den fermentativen Abbau der Guanylskure in der Kaninchenleber. Hoppe-Seyler’s Z. physiol. Chem. 208, 185 (1932).Google Scholar
  101. 96.
    Schmidt, G. and S. J. Thannhauser: Intestinal Phosphatase. J. biol. Chemistry 149, 369 (1943)Google Scholar
  102. 97.
    Shaw, E. and D. W. Woolley: A New and Convenient Synthesis of 4-amino5-imidazolecarboxamide. J. biol. Chemistry 82, 89 (1949).Google Scholar
  103. 98.
    Shive, W., W W. Ackermann, M. Gordon, M. E. Getzendanerand R. E. Eakin: 5(4)-Amino-4-(5)imidazolecarboxamide, a Precursor of Purines. J. Amer. chem. Soc. 69, 725 (1947)CrossRefGoogle Scholar
  104. 99.
    Stephenson, M. and A. R. Trim: The Metabolism of Adenine Compoands by Bacteria coli with a Micro-Method for the Estimation of Ribose. Biochemic. J. 32. 1740 (1938).Google Scholar
  105. 99a.
    a. Stern, H., V. Allfrey, A. E. Mirskyand H. Saetren: Some Enzymes of Isolated Nuclei. J. gen. Physiol. 35, 559 (1952).CrossRefGoogle Scholar
  106. 100.
    Stetten, M. R. and C. L. Fox, Jr.: An Amine Formed by Bacteria During Sulfonamide Bacteriostasis J. biol. Chemistry 161, 333 (1945)Google Scholar
  107. 101.
    Sutherland, E. W., M. Cohn, T. Posternakand C. F. Cori: The Mechanism of the Phosphoglucomutase Reaction. J. biol. Chemistry 180, 1285 (1949)Google Scholar
  108. 102.
    Wajzer, J.: Synthèse enzymatique de nucléotides puriques. I. Arch. Sci. physiol. 1, 485 (1947) [Chem. Abstr. 43, 5064 (1949)]Google Scholar
  109. 103.
    Wajzer, J.: Synthèse enzymatique de nucléotides puriques. II. Arch. Sci. physiol. 2, 493 (1947) [Chem. Abstr. 43, 5064 (1949)].Google Scholar
  110. 104.
    Wajzer, J., F. Baron: Réactions enzymatiques entre les esters phosphoriques du ribose et les bases puriques. Bull. Soc. Chim. biol. (Paris) 31, 750 (1949)Google Scholar
  111. 105.
    Wang, T. P. and J. O. Lampen: The Cleavage of Adenosine Cytidine and Xanthosine by Lactobacillus pentosus. J. biol. Chemistry 192, 339 (1951)Google Scholar
  112. 106.
    Wang, T. P., H. Z. Sableand J. O. Lampen: Enzymatic Deamination of Cytosine Nucleosides. J. biol. Chemistry 184, 17 (1950).Google Scholar
  113. 107.
    Warburg, O. U. W. Christian: Abbau von Robisonester durch TriphosphoPyridin-Nucleotid. Biochem. Z. 292, 287 (1937).Google Scholar
  114. 108.
    Weygand, F., A. Wackerand H. Dellweg: Spaltung von Desoxyribonucleinsaure mit Bleihydroxyd and Isolierung der Desoxyriboside durch kontinuierliche Gegenstromverteilung. Z. f. Naturforsch. 6b, 140 (1951).Google Scholar
  115. 109.
    Zeuthen, E.: Segmentation, Nuclear Growth and Cytoplasmic Storage in Eggs of Echinoderms and Amphibia. Publ. Staz. Zool. Napoli 23, Suppl. (in press).Google Scholar

Copyright information

© Wien · Springer-Verlag 1952

Authors and Affiliations

  • Herman M. Kalckar
    • 1
  1. 1.CopenhagenDenmark

Personalised recommendations