Advertisement

Abstract

It has been the hope of the biochemist for more than half a century to study in vitro the biological, i. e. enzymatic synthesis of protein. Of course, the hope has not yet been realized; but the outlook is brighter, or at least, less dim now. Certain misconceptions have been recognized, and with the removal of these obstructions approaches to the core of the problem appear to have been opened. This advance was made possible by the new experimental tool of isotope-labeled tracers. In most in vitro chemical reactions the products are formed in large enough quantities to be measured. This is not the case in protein biosynthesis, first because the reaction is very slow compared with ordinary chemical reactions, and second because a relatively large amount of protein is needed as enzyme system to make the reaction go at all; and any small increase in protein that may occur has to be seen against the backgroand of the large amount of protein present initially. The latter difficulty is now being circumvented, to some extent, by the use of antibodies to precipitate small amounts of specific proteins formed, [Petters and Anfinsen (129, 130), Keston and Dreyfus (100)]. But even in these experiments it is possible that there has not been an increase in the mass of total protein, but only a transformation of one tissue protein into another.

Keywords

Free Amino Acid Peptide Bond Peptide Synthesis Liver Homogenate Hippuric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdou, I. A. and H. Tarver: Plasma Protein. II. Relationship between Circulating and Tissue Protein. J. biol. Chemistry 190, 781 (1951).Google Scholar
  2. 2.
    Abrams, R., J. M. Goldingerand E. S. G. Barron: Synthesis of Protein and Other Cell Substances from Acetic Acid in Isolated Bone Marrow. Biochim. Biophys. Acta 5, 74 (1950)Google Scholar
  3. 3.
    Anfinsen, C. B.: Radioactive Crystalline Ribonuclease. J. biol. Chemistry 185, 827 (1950).Google Scholar
  4. 4.
    Anfinsen, C. B.: The Nature of Intermediates in Protein Synthesis. Science (New York) 114, 683 (1951).Google Scholar
  5. 5.
    Anfinsen, C: B., A. B.loff, A. B. Hastingsand A. K. Solomon: The In Vitra Turnover of Dicarboxylic Amino Acids in Liver Slice Proteins. J. biol. Chemistry 168, 771 (1947)Google Scholar
  6. 6.
    Anfinsen, C. B. and D. Steinberg: Studies on the Biosynthesis of Ovalbumin. J. biol. Chemistry 189, 739 (1951)Google Scholar
  7. 7.
    Angier, R. B., J. H. Boothe, B. L. Hutchings, J. H. Mowat. J. Semb, E. L. R. Stokstad, Y. Subbarow, C. W. Waller, D. B. Consijeich, M. J. Fahrenbach, M. E. Hultquist, E. Kuh, E. H. Northey, D. R. Seeger, J. P. Sickels and J. M. Smith, Jr.: The Structure and Synthesis of the Liver L. Casei Factor. Science (New York) 103, 667 (1946).Google Scholar
  8. 8.
    Barker, H. A.: Recent Investigations on the Formation and Utilization of Active Acetate. In: W. D. Mcelroy and B. Glass, A Symposium on Phosphorus Metabolism, pp. 240–241. Baltimore: John Hopkins Press. 1951.Google Scholar
  9. 9.
    Bergmann, M. and O. K. Behrens: On the Assymmetric Course of the Enzymatic Synthesis of Peptide Bonds. J. biol. Chemistry 124, 7 (1938).Google Scholar
  10. 10.
    Bergmann, M. and H. Fraenkel-Conrat: The Rôle of Specificity in the Enzymatic Synthesis of Proteins. Syntheses with Intracellular Enzymes. J. biol. Chemistry 119, 707 (1937).Google Scholar
  11. 11.
    Bergmann, M. and H. Fraenkel-Conrat: The Enzymatic Synthesis of Peptide Bonds. J. biol. Chemistry 124, 1 (1938).Google Scholar
  12. 12.
    Bergmann, M. and J. S. Fruton: Some Synthetic and Hydrolytic Experiments with Chymotrypsin. J. biol. Chemistry 124, 321 (1938)Google Scholar
  13. 13.
    Bergmann, M. and J. S. Fruton: The Significance of Coupled Reactions for the Enzymatic Hydrolysis and Synthesis of Proteins. Ann. Yew York Acad. Sci. 45, 409 (1944).Google Scholar
  14. 14.
    Brocu, K.: A Heat Stable Co-factor for Glutathione Synthesis. Federat. Proc. (Amer. Soc. ezp. Biol.) 80, 163 (1951).Google Scholar
  15. 15.
    Bodansky, O.: Introduction to Physiological Chemistry, p. 280. New York: J. Wiley and Sons. 1938.Google Scholar
  16. 16.
    Borsook, H.: Protein Turnover and Incorporation of Labeled AminQ Acids into Tissue Proteins In Vivo and In Vitro. Physiologic. Rev. 30, 206 (1950).Google Scholar
  17. 17.
    Borsook, H.: (unpublished).Google Scholar
  18. 18.
    Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: The Incorporation of Labeled Lysine into the Proteins of Guinea Pig Liver Homogenate. J. biol. Chemistry 279, 689 (1949).Google Scholar
  19. 19.
    Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: A Peptide Fraction in Liver. J. biol. Chemistry 179, 705 (1949).Google Scholar
  20. 20.
    Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: Uptake of Labeled Amino Acids by Tissue Proteins In Vitro. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 589 (1949)Google Scholar
  21. 21.
    Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: The Uptake In Vitro of Cm-Labeled Glycine, L-Leucine, and L-Lysine by Different Components of Guinea Pig Liver Homogenate. J. biol. Chemistry 184, 529 (1950).Google Scholar
  22. 22.
    Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: Metabolism of C14-Labeled Glycine, L-Histidine, L-Leucine and L-Lysine. J. biol. Chemistry 187, 839 (1950).Google Scholar
  23. 23.
    Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: Incorporation In Vitro of Labeled Amino Acids into Bone Marrow Cell Proteins. J. biol. Chemistry, 86, 297 (1950).Google Scholar
  24. 24.
    Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighleyand P. H. Lowy: Incorporation In Vitro of Labeled Amino Acids into Rat Diaphragm Proteins. J. biol. Chemistry 186, 309 (1950).Google Scholar
  25. 25.
    Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: Incorporation In Vitro of Labeled Amino Acids into Proteins of Rabbit Reticulocytes. J. biol. Chemistry 196, 669 (1952).Google Scholar
  26. 26.
    Borsook, H. and J. W. Dubnoff: The Biological Synthesis of Hippuric Acid In Vitro. J. biol. Chemistry 132, 307 (1940).Google Scholar
  27. 27.
    Borsook, H. and J. W. Dubnoff: Synthesis of Hippuric Acid in Liver Homogenate. J. biol. Chemistry 268, 397 (1947)Google Scholar
  28. 28.
    Borsook, H. and J. W. Dubnoff: (unpublished).Google Scholar
  29. 29.
    Borsook, H. and H. M. Huffman: Some Thermodynamical Considerations of Amino Acids, Peptides, and Related Substances. In Claschmidt, Chemistry of the Amino Acids and Proteins, p. 822. Springfield, III. — Baltimore. 1938.Google Scholar
  30. 30.
    Borsook, H. and G. L. Keighley: The Continuing Metabolism of Nitrogen in Animals. Proc. Roy. Soc. (London), Ser. B 118, 488 (1935).Google Scholar
  31. 31.
    Brachet, J.: Recherches sur la synthèse de l’acide thymonucléique pendant le développement de l’oeuf d’oursin. Arch. Biol. (Paris) 44, 519 (1933)Google Scholar
  32. 32.
    Brachet, J.: The Metabolism of Nucleic Acid during Embryonic Development. Cold Spring Harbor Symp. Quant. Biology 12, 18 (1947).Google Scholar
  33. 33.
    Brenner, M., H. R. Millerand R. W. Pfister: Eine neue enzymatische Peptidsynthese. Helv. chim. Acta 33, 568 (1950).Google Scholar
  34. 34.
    Brenner, M. and R. W. Pfister: Enzymatische Peptidsynthese. Isolierung von enzymatisch gebildetem L-Methionyl-L-methionin and L-Methionyl-Lmethionyl-L-methionin Helv. shim. Acta 34, 2085 (1951).Google Scholar
  35. 35.
    Brenner, M., E. Sailerand K. Rüfenacht: Enzymatische Peptidsynthese. Peptidbildung aus DL-Threonin-isopropyl-ester. Helv. chim. Acta 34, 2096 (1951)Google Scholar
  36. 36.
    Cannon, P. R., C. H. Steffee, L. J. Frazier, D. A. Rowleyand P. C. Stepto: The Influence of Time of Ingestion of Essential Amino Acids upon Utilization in Tissue-Synthesis. Federat. Proc. (Amer. Soc. exp. Biol.) 6, 390 (1947)Google Scholar
  37. 37.
    Casperrson, T. and K. Brandt: Nucleotidumsatz and Wachstum bei PreB- hefe. Protoplasma 35, 507 (1940/41).Google Scholar
  38. 38.
    Casperrson, T., H. Landström-Hydan and L. Aquilonius: CytOplasmanukleotide in eiweißproduzierenden Drüsenzellen. Chromosome 2, 111 (1941–1944).Google Scholar
  39. 39.
    Casperrson, T. and J. Schultz: Nucleic Acid Metabolism of the Chromosomes in Relation to Gene Reproduction. Nature (London) 142, 294 (1938).Google Scholar
  40. 40.
    Casperrson, T. and B. Thorell: Der endozellulare Eiweiß-and NukleinsäureStoffwechsel im embryonalen Gewebe. Chromosoma 2, 132 (1941–1944).Google Scholar
  41. 41.
    Chantrenne, H.: The Requirement for Coenzyme A in the Enzymatic Synthesis of Hippuric Acid. J. biol. Chemistry 189, 227 (1951).Google Scholar
  42. 42.
    Cohen, P. P. and R. W. Mcgilvery: The Formation of p-Aminohippuric Acid by Rat Liver Slices. J. biol. Chemistry 266, 26, (1946).Google Scholar
  43. 43.
    Cohen, P. P. and R. W. Mcgilvery: Peptide Bond Synthesis. II. The Formation of p-Amino-hippuric Acid by Liver Homogenates. J. biol. Chemistry 169, 119 (1947).Google Scholar
  44. 44.
    Cohen, P. P. and R. W. Mcgilvery: Peptide Bond Synthesis. III. On the Mechanism of p-Aminohippuric Acid Synthesis J. biol. Chemistry 171, 121 (1947).Google Scholar
  45. 45.
    Cohen, S. S.: The Synthesis of Bacterial Viruses in Infected Cells. Cold Spring Harbor Sympos. _quantitat. Biol. 12, 35 (1947).Google Scholar
  46. 46.
    Collier, H. B.: The Problem of Plastein Formation. I. The Formation of Plastein by Papain. Canad. J. Res. Sect. B 18, 255 (1940).Google Scholar
  47. 47.
    Collier, H. B.: The Chemical Changes Involved in Plastein Formation by Papain and by Pepsin. Canad. J. Res. Sect. B 28, 272 (1940).Google Scholar
  48. 48.
    Cotzias, G. C. and V. P. Dole: Metabolism of Amines. II. Mitochondria) Localization of Monoamine Oxidase. Proc, Soc. exp. Biol. Med. 78, 157 (1951).Google Scholar
  49. 49.
    Cross, R. J., J. V. Taggart, G. A. Covo and D. E. Green: Studies on the Cyclophorase System. VI. The Coupling of Oxidation and Phosphorylation. J. biol. Chemistry 177, 655 (1949)Google Scholar
  50. 50.
    Cunningham, L., A. C. Griffinand J. M. Luck: Effect of a Carcinogenic Azo Dye on Liver Cell Structure. Isolation of Nuclei and Cytoplasmic Granules. Cancer Res. 10, 194 (1950).Google Scholar
  51. 51.
    Dovinsos, J. N.: Some Factors Influencing the Nucleic Acid Content of Cells and Tissues. Cold Spring Harbor Sympos. quantitat. Biol. 12, 50 (1947).Google Scholar
  52. 52.
    Delwiche, C. C., W. D. Loomisand P. K. Stumpf: Amide Metabolism in Higher Plants. II. The Exchange of Isotopic Ammonia by Glutamyl Transferase. Arch. Biochemistry 33, 333 (1951).Google Scholar
  53. 53.
    Ecker, P. G. E.: The Ultracentrifuge Study of Plastein. J. gen. Physiol. 30, 399 (1946)Google Scholar
  54. 54.
    Elliott, D. F. and A. Neuberger: Irreversibility of the Deamination of Threonine in the Rabbit and Rat. Biochemic. J. 46, 207 (1950).Google Scholar
  55. 55.
    Elliott, W. H.: Adenosinetriphosphate in Glutamine Synthesis. Nature (London) 161, 728 (1948).Google Scholar
  56. 56.
    Elliott, W. H.: Adenosinetriphosphate in Glutamine Synthesis. Biochemic. J. 42, V (1948).Google Scholar
  57. 57.
    Folin, O.: A Theory of Protein Metabolism. Amer. J. Physiol. 73, 117 (1905).Google Scholar
  58. 58.
    Folin, O. and W. Denis: Protein Metabolism from the Standpoint of Blood and Tissue Analyses. J. biol. Chemistry 11, 87 (1912).Google Scholar
  59. 59.
    Folley, S. J.: Note on the Preparation and Fractionation of the a-Naphthylisocyanate Compoand of Plastein. Biochemic. J. 27, 151 (1933)Google Scholar
  60. 60.
    Forker, L. L., L L. Charkoff, C. Entenmanand H. Tarver: Formation of Muscle Protein in Diabetic Dogs, Studied with S38-Methionine. J. biol. Chemistry 188, 37 (1951)Google Scholar
  61. 61.
    Frantz. I. D., Jr. and R. B. Loatfield: Equilibrium and Exchange Reactions Involving Peptides, Amino Acids, and Proteolytic Enzymes. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 172 (1950).Google Scholar
  62. 62.
    Eitanrj, I. D., Jr., R. B. Loftfieldand W. W. Miller. Incorporation of C’ from Carboxyl-Labeled DL-Alanine into the Proteins of Liver Slices. Science (New York) 106, 544, (1947).Google Scholar
  63. 63.
    Frantz, I. D., Jr., P. C. Zamecnik, J. W. Reeseand M. L. Stephenson: The Effect of Dinitrophenol on the Incorporation of Alanine Labeled with Radioactive Carbon into the Proteins of Slices of Normal and Malignant Rat Liver. J. biol. Chemistry 174, 773 (1948).Google Scholar
  64. 64.
    Friedberg, F.: The Action of Dehydrocorticosterone in the Regulation of Protein Turnover Studied with Ss5 Labeled Methionine. Euclides 109, 116 (1950).Google Scholar
  65. 65.
    Friedberg, F. and D. M. Greenberg: The Effect of Growth Hormone on the Incorporation of 585 of Methionine into Skeletal Muscle Protein of Normal and Hypophysectomized Animals. Arch. Biochemistry 17, 193 (1948).Google Scholar
  66. 66.
    Friedberg, F., M. P. Schulmanand D. M. Greenberg: The Effect of Growth on the Incorporation of Glycine Labeled with Radioactive Carbon into the Protein of Liver Homogenates. J. biol. Chemistry 173, 437 (1948).Google Scholar
  67. 67.
    Friedberg, F., H. Tarverand D. M. Greenberg: The Distribution Pattern of Sulfur-Labeled Methionine in the Protein and the Free Amino Acid Fraction of Tissues after Intravenous Administration. J. biol. Chemistry 173, 355 (1948).Google Scholar
  68. 68.
    Fruton, J. S.: Rôle of Proteolytic Enzymes in Biosynthesis of Peptide Bonds. Yale J. Biol. Med. 22, 263 (1950).Google Scholar
  69. 69.
    Geiger, E.: Experiments with Delayed Supplementation of Incomplete Amino Acid Mixtures. J. Nutrit. 34, 97 (1947).Google Scholar
  70. 70.
    Geiger, E.: The Rôle of the Time Factor in Feeding Supplementary Proteins. J. Nutrit. 36, 813 (1948).Google Scholar
  71. 71.
    Geiger, E.: The Importance of the Time Element in Feeding of Growing Rats: Experiments with Delayed Supplementation of Protein. Science (New York) 108, 42 (1948).Google Scholar
  72. 72.
    Geiger, E.: The Rôle of the Time Factor in Protein Synthesis. Science (New York) 111, 594 (1950).Google Scholar
  73. 73.
    Geiger, E.: Extra Caloric Function of Dietary Components in Relation to Protein Utilization. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 670 (1951).Google Scholar
  74. 74.
    Geiger, E., E. B. Hagertyand H. D. Gatchell: Transformation of Tryptophan to Nicotinic Acid Investigated with Delayed Supplementation of Tryptophan Arch. Biochemistry 23, 315 (1949).Google Scholar
  75. 75.
    Greenberg, D. M., F. Friedberg, M. P. Schulmanand T. Winnick: Studies on the Mechanism of Protein Synthesis with Radioactive Carbon-Labeled Compoands Cold Spring Harbor Sympos. quantitat. Biol. 13, 113 (1948).Google Scholar
  76. 76.
    Greenberg, D. M. and T. Winnick: Studies in Protein Metabolism with Compoands Labeled with Radioactive Carbon. II. The Metabolism of Glycine in the Rat. J. biol. Chemistry 173, 199 (1948).Google Scholar
  77. 77.
    Greene, C. H.: Changes in Nitrogenous Extractives in the Muscular Tissue of the King Salmon During the Fast of Spawning Migration. J. biol. Chemistry 39, 457 (1919).Google Scholar
  78. 78.
    Griffin, A. C., S. Bloom, L. Cunningham, J. D. Teresiand J. M. Luck: The Uptake of Labeled Glycine by Normal and Cancerous Tissues in the Rat. Cancer 3, 316 (1950).Google Scholar
  79. 79.
    Grossowicz, N., E. Wainfan, E. Borekand H. Waelsch: The Enzymatic Formation of Hydroxamic Acids from Glutamine and Asparagine. J. biol. Chemistry 187, 111 (1950).Google Scholar
  80. 80.
    Hanes, C. S., F. J. R. Hirdand F. A. Isherwood: Synthesis of Peptides in Enzymatic Reactions Involving Glutathione. Nature (London) 166, 288 (1950).Google Scholar
  81. 81.
    Harte, R. A., J. J. Traversand P. Sarich: The Effect on Rat Growth of Alternated Protein Intakes. J. Nutrit. 35, 287 (1948).Google Scholar
  82. 82.
    Haugaard, G. and R. M. Roberts: Heats of Organic Reactions. XIV. The Digestion of ß-Lactoglobulin by Pepsin. J. Amer. chem. Soc. 64, 2664 (1942).Google Scholar
  83. 83.
    Henderson, R. and R. S. Harris: Concurrent Feeding of Amino Acids. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 385 (1949)Google Scholar
  84. 84.
    Herbst, R. M. and D. Shemin: The Synthesis of Peptides by Transamination. J. biol. Chemistry 147, 541 (1943)Google Scholar
  85. 85.
    Hitchcock, D.: Amphoteric Properties of Amino Acids and Proteins. In: C. L. A. Schmidt, Chemistry of the Amino Acids and Proteins, p. 596. Springfield, III. — Baltimore. 1938.Google Scholar
  86. 86.
    Hoberman, H. D.: Measurement of Rates of Protein Degradation and Protein Loss in Fasting Animals. J. biol. Chemistry 188, 797 (1951).Google Scholar
  87. 87.
    Hogeboom, G. H.: Separation and Properties of Cell Components. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 640 (1951)Google Scholar
  88. 88.
    Hogeboom, G. H. and W. C. Schneider: Cytochemical Studies of Mammalian Tissues. III. Isocitric Dehydrogenase and Triphosphopyridine Nucleotide-Cytochrome C Reductase of Mouse Liver. J. biol. Chemistry 186, 417 (1950).Google Scholar
  89. 89.
    Holloway, B. J. and S. H. Ripley: Nucleic Acid Content of Reticulocytes and its Relation to Uptake of Radioactive Leucine In Vitro. J. biol. Chemistry 196. 695, (1952).Google Scholar
  90. 90.
    >Hydén, H.: Protein Metabolism in the Nerve Cell and Reproduction. Acta physiol. Scand. 6, Suppl. 17, 1 (1943).Google Scholar
  91. 91.
    Hydén, H.: The Nucleoproteins in Virus Reproduction. Cold Spring Harbor Sympos. quantitat. Biol. 12, 104 (1947).Google Scholar
  92. 92.
    Johnston, R. B. and K. Bloch: Enzymatic Synthesis of Glutathione. J biol. Chemistry 188, 221 (1951).Google Scholar
  93. 93.
    Johnston, R. B., M. J. Mycekand J. S. Fruton: Catalysis of Transamidation Reactions by Proteolytic Enzymes. J. biol. Chemistry 185, 629 (1950).Google Scholar
  94. 94.
    Johnston, R. B., M. J. Mycekand J. S. Fruton: Catalysis of Transamidation Reactions by Chymotrypsin. J. biol. Chemistry 182, 205 (1950).Google Scholar
  95. 95.
    Kaufman, S. and H. Neurath: Inhibition of Chymotrypsin by Structural Analogs of Specific Substrates. Arch. Biochemistry 21, 245 (1940)Google Scholar
  96. 96.
    Kaufman, S. and H. Neurath: Structural Requirements of Specific Substrates for Chymotrypsin. II. An Analysis of the Contribution of the Structural Components to Enzymatic Hydrolysis. Arch. Biochemistry 21, 437 (1949)Google Scholar
  97. 97.
    Kaufman, S., H. Neurathand G. W. Schwert: The Specific Peptidase and Esterase Activities of Chymotrypsin. J. biol. Chemistry 177, 793 (1949)Google Scholar
  98. 98.
    Keller, E. B.: Turnover of Proteins of Cell Fractions of Adult Rat Liver In Vivo. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 206 (1951).Google Scholar
  99. 99.
    Kemen, A. J., S. W. Hunter, G. E. Mooreand C. R. Hitchcock: Distribution of Tracer Doses of Methionine Tagged with Radiosulfur in Normal and Neo-plastic Tissue. Cancer Res. 9, 174 (1949).Google Scholar
  100. 100.
    Feston, A. and J.-C. Dreyfus: Tracer Studies in Protein Synthesis: Antibody Formation by Spleen Slices. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 206 (1951).Google Scholar
  101. 101.
    Kielley, R. K. and W. C. Schneider: Synthesis of p-Aminohippuric Acid by Mitochondria of Mouse Liver Homogenates. J. biol. Chemistry 185, 869 (1950)Google Scholar
  102. 102.
    Kochakian, C. D.: The Protein Anabolic Effects of Steroid Hormones. Vitamins and Hormones 4, 255 (1946).Google Scholar
  103. 103.
    Kochakian, C. D.: The Effect of Dose and Nutritive State on the Renotrophic and Androgenic Activities of Various Steroids. Amer. J. Physiol. 145, 549 (1946).Google Scholar
  104. 104.
    Kochakian, C. D.: Comparison of Protein Anabolic Property of Various Androgens in the Castrated Rat. Amer. J. Physiol. 160, 83 (1950).Google Scholar
  105. 105.
    Kochakian, C. D.: Comparison of Protein Anabolic Properties of Testosterone Propionate and Growth Hormone in the Rat. Amer. J. Physiol. 160, 66 (1950)Google Scholar
  106. 106.
    Kochakian, C. D. and B. Beall: Comparison of the Protein Anabolic Property of Testosterone Propionate in the Male and Female Rat. Amer. J. Physiol. 160, 62 (1950).Google Scholar
  107. 107.
    Kochakian, C. D., J. H. Hammand M. N. Bartlett: Effect of Steroids on the Body Weight, Temporal Muscle and Organs of the Guinea Pig. Amer. J. Physiol. 155, 242 (1948).Google Scholar
  108. 108.
    Kochakian, C. D., J. G. Moeand J. Dolphin: Protein Anabolic Property of Testosterone Propionate in Adrenalectomized and Normal Rats. Amer. J. Physiol. 162, 581 (1950).Google Scholar
  109. 109.
    Le Page, G. A. and C. Heidelberger: Incorporation of Glycine-2-C“ into Proteins and Nucleic Acids of Normal and Neoplastic Rat Tissues. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 195 (1950).Google Scholar
  110. 110.
    Le Page, G. A. and C. Heidelberger: Incorporation of Glycine-2-C14 into the Proteins and Nucleic Acids of the Rat. J. biol. Chemistry 188, 593 (1951).Google Scholar
  111. 111.
    Levine, M. and H. Tarver: On the Synthesis and some Applications of Serine-ß-C14. J. biol. Chemistry 184, 427 (1950).Google Scholar
  112. 112.
    Levine, M. and H. Tarver: Studies on Ethionine. III. Incorporation of Ethionine into Rat Proteins. J. biol. Chemistry 192, 835 (1951).Google Scholar
  113. 113.
    Li, C. H. and H. M. Evans: The Properties of the Growth and Adrenocorticotrophic Hormones. Vitamins and Hormones 5, 197 (1947)Google Scholar
  114. 114.
    Lipmann, F.: MetabolicGeneration and Utilization of Phosphate Bond Energy. Adv. Enzymology 1, 99 (1941).Google Scholar
  115. 115.
    Lipmann, F.: Mechanism of Peptide Bond Formation. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 597 (1949).Google Scholar
  116. 116.
    Litwack, G., J. N. Williams, Jr., F. Feigelsonand C. A. Elvehjem: Xanthine Oxidase and Liver Nitrogen Variation with Dietary Protein. J. biol. Chemistry 187, 605 (1950).Google Scholar
  117. 117.
    Loomis, W. F. and F. Lipmann: Reversible Inhibition of the Coupling between Phosphorylation and Oxidation. J. biol. Chemistry 173, 807 (1948).Google Scholar
  118. 118.
    Lotspeich, W. D.: Relations between Insulin and Pituitary Hormones in Amino Acid Metabolism. J. biol. Chemistry 185, 221 (1950).Google Scholar
  119. 119.
    Martin, C. J. and R. Robison: The Minimum Nitrogen Expenditure of Man and the Biological Value of Various Proteins for Human Nutrition. Biochemic. J. 16, 407 (1922).Google Scholar
  120. 120.
    Mcgilvery, R. W. and P. P. Cohen: Enzymatic Synthesis of Ornithuric Acids. J. biol. Chemistry 183, 179 (1950).Google Scholar
  121. 121.
    Melchior, J. B., O. Kliozeand I. M. Klotz: Further Studies of the Synthesis of Protein by Escherichia Coli. J. biol. Chemistry 189, 411 (1951).Google Scholar
  122. 122.
    Melchior, J. B., M. Mellodyand I. M. Klotz: The Synthesis of Protein by Non-proliferating Escherichia Coli. J. biol. Chemistry 174, 81 (1948).Google Scholar
  123. 123.
    Melchior, J. B. and H. Tarver: Studies in Protein Synthesis In Vitro. I. On the Synthesis of Labeled Cystine (Su) and its Attempted Use as a Tool in the Study of Protein Synthesis. Arch. Biochemistry 12, 301 (1947).Google Scholar
  124. 124.
    Melchior, J. B. and H. Tarver: Studies on Protein Synthesis In Vitro. II. On the Uptake of Labeled Sulfur by the Proteins of Liver Slices Incubated with Labeled Methionine (S25). Arch. Biochemistry 12. 309 (1947)Google Scholar
  125. 125.
    Miller, L. L.: Changes in Rat Liver Enzyme Activity with Acute Inanition. Relation of Loss of Enzyme Activity to Liver Protein Loss. J. biol. Chemistry 172, 113 (1948).Google Scholar
  126. 126.
    Miller, L. L.: The Loss and Regeneration of Rat Liver Enzymes Related to Diet Protein. J. biol. Chemistry 186, 253 (1950).Google Scholar
  127. 127.
    Muntwyler, E., S. Seifterand D. M. Harkness: Some Effects of Restriction of Dietary Protein on the Intracellular Components of Liver. J. biol. Chemistry 184, 181 (1950).Google Scholar
  128. 128.
    Northrop, J.: Plastein Formation from Pepsin,and Trypsin. J. gen. Physiol. 30, 377 (1946)Google Scholar
  129. 129.
    Peters, T., Jr. and C. B. Anfinsen: The Production of Radioactive Serum Albumin by Liver Slices. J. biol. Chemistry 182, 171 (1950).Google Scholar
  130. 130.
    Peters, T., Jr. and C. B. Anfinsen: Net Production of Serum Albumin by Liver Slices. J. biol. Chemistry 286, 805 (1950).Google Scholar
  131. 131.
    Peterson, E. A., D. M. Greenbergand T. Winnick: Characteristics of the Amino Acid Incorporation System of Liver Homogenates. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 214 (1950).Google Scholar
  132. 132.
    Porter, R. R. and F. Sanger: The Free Amino Groups of Haemoglobin. Biochemic. J. 42, 287 (1948)Google Scholar
  133. 133.
    Potter, V. R.,, R. O. Recknageland R. B. Hurlbert: Intracellular Enzyme Distribution; Interpretations and Significance. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 646 (1951).Google Scholar
  134. 134.
    Price, J. M., E. C. Millerand J. A. Miller, The Intracellular Distribution of Protein, Nucleic Acids, Riboflavin and Protein-Boand Aminoazo Dye in the Livers of Rats Fed p-Dimethyl-aminoazobenzene. J. biol. Chemistry 173, 345 (1948)Google Scholar
  135. 135.
    Price, J. M., E. C. Miller, J A Millerand G. M. Weber: Studies On the Intracellular Composition of Livers from Rats Fed Various Aminoazo Dyes. I. 4-Aminoazobenzene, 4-Dimethylaminoazobenzene, 4’-Methyl and 3’-Methyl4-Dimethylaminoazobenzene. Cancer Res. 9, 398 (1949)Google Scholar
  136. 136.
    Price, J. M., E. C. Miller, J A Millerand G. M. Weber: Studies on the Intracellular Composition of Livers from Rats, Fed Various Aminoazo Dyes. II. 3’-Methyl-2’-Methyl-, and 2-Methyl-4-Dimethylaminoazobenzene, 3-Methyl-4-Monomethylaminoazobenzene, and 4’-Fluoro-4-Dimethylaminoazobenzene. Cancer Res. 10, 18 (1950).Google Scholar
  137. 137.
    Price, J. -M., J. A. Miller, E. C. Millerand G. M. Weber: Studies on the Intracellular Composition of Liver and Liver Tumor from Rats Fed 4-Dimethylaminoazo-benzene. Cancer Res. 9, 96 (1949)Google Scholar
  138. 138.
    Ratner, S., M. Blanchard, A. F. Coburnand D. E. Green: Isolation of a Peptide of p-Aminobenzoic Acid from Yeast. J. biol. Chemistry 155, 689 (1944)Google Scholar
  139. 139.
    Reid, J. C. and H. B. Jones: Radioactivity Distribution in the Tissues of Mice Bearing Melanosarcoma after Administration of DL-Tyrosine Labeled with Radioactive Carbon. J. biol. Chemistry 174, 427 (1948).Google Scholar
  140. 140.
    Reifenstein, E. C., F. Allbright, Jr. and S. L. Wells: Accumulation, Interpretation, and Presentation of Data Pertaining to Metabolic Balances, Notably Those of Calcium, Phosphorus, and Nitrogen. J. clin. Endocrin. 5, 367 (1945); Correction, ibid. 6, 232 (1946).Google Scholar
  141. 141.
    Rittenberg, D., R. Schoenheimer and A. S. Keston: Studies in Protein-Metabolism. IX. The Utilization of Ammonia by Normal Rats on a Stock Diet. J. biol. Chemistry 128, 603 (1939).Google Scholar
  142. 142.
    Rittenberg, D. and D. Shemin: The Metabolism of Proteins and Amino Acids. Annu. Rev. Biochem. 15, 247 (1946).Google Scholar
  143. 143.
    Rutman, R., E. Dempsterand H. Tarver: Genetic Differences in Methionine Uptake by Surviving Tissues. J. biol. Chemistry 177, 491 (1949)Google Scholar
  144. 144.
    Salter, W. T. and O. H. Pearson: The Enzymatic Synthesis from Thyroid Diiodotyrosine Peptone of an Artificial Protein which Relieves Myxedema. J. biol. Chemistry 112, 579 (1935/36).Google Scholar
  145. 145.
    Sanadi, D. R. and D. M. Greenberg: Effect of Amino Acid Deficiencies on Incorporation of Radioactive-Carbon Labeled Amino Acids into Animal Proteins. Proc. Soc. exp. Biol. Med. 69, 162 (1948).Google Scholar
  146. 146.
    Sarkar, N., M. Fuldand D. E. Green: Studies on the Synthesis of Hippuric Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 242 (1951).Google Scholar
  147. 147.
    Schaeffer, A. J. and E. Geiger: Cataract Development in Animals with Delayed Supplementation of Tryptophane. Proc. Soc. exp. Biol. Med. 66, 309 (1947)Google Scholar
  148. 148.
    Schneider, W. C.: NucleicAcids in Normal and Neoplastic Tissues. Cold Spring Harbor Sympos. quantitat. Biol. 12, 169 (1947).Google Scholar
  149. 149.
    Schoenheimer, R.: The Dynamic State of Body Constituents. Cambridge, Mass.: Harvard Univ. Press. 1942.Google Scholar
  150. 150.
    Schoenheimer, R., S. Ratnerand D. Rittenberg: Studies in Protein Metabolism. VII. The Metabolism of Tyrosine. J. biol. Chemistry 127, 333 (1939).Google Scholar
  151. 151.
    Schoenheimer, R., S. Ratnerand D. Rittenberg: Studies on Protein Metabolism. X. The Metabolic Activity of Body Proteins Investigated with L(-) Leucine Containing Two Isotopes. J. burl. Chemistry 130, 703 (1939)Google Scholar
  152. 152.
    Schoenheimer, R., S. Rather, D. Rittenbergand M. Heidelberger: The Interaction of Blood Proteins of the Rat with Dietary Nitrogen. J. biol. Chemistry 144, 541 (1942).Google Scholar
  153. 153.
    Schou, M., N. Grossowicz, A. Lajthaand H. Waeish: Enzymatic Formation of Glutamo-Hydroxamic Acid from Glutamine in Mammalian Tissue, Nature (London) 167, 818 (1951).Google Scholar
  154. 154.
    Schwert, R. S.: (unpublished).Google Scholar
  155. 155.
    Schweigert, B. S., B. T. Guthneck, J. M. Price, J. A. Millerand E. C. MillerAmino Acid Composition of Morphological Fractions of Rat Livers and Induced Liver Tumors. Proc. Soc. exp. Biol. Med. 72, 495 (1949)Google Scholar
  156. 156.
    Schweigert, B. S., H. E. Sauberlich, C. A. Elvehjemand C. A. Baumann: Free Tryptophane in Blood and Urine. J. biol. Chemistry 164, 213 (1946).Google Scholar
  157. 157.
    Schwert, G. W., H. Neurath, S. Kaufmanand J. E. Snobe: The Specific Esterase Activity of Trypsin. J. biol. Chemistry 172, 221 (1948).Google Scholar
  158. 158.
    Seifter, S., E. Muntwylerand. D. M. Harkness: Some Effects of Continued Protein Deprivation, with and without Methionine Supplementation, on Intracellular Liver Components. Proc. Soc. exp. Biol. Med. 75, 46 (1950).Google Scholar
  159. 159.
    Shemin, D., J. M. Londonand D. Rittenberg: The Synthesis of Protoporphyrin In Vitro by Red Blood Cells of the Duck. J. biol. Chemistry 183, 757 (1950)Google Scholar
  160. 160.
    Shemin, D. and D. Rittenberg: Some Interrelationships in General Nitrogen Metabolism. J. biol. Chemistry 153, 401 (1944)Google Scholar
  161. 161.
    Siesevitz, P. and P. C. Zamecnik: In Vitro Incorporation of x-C“-DL-Alanine into Protein of Rat-Liver Granular Fractions Federat. Proc. (Amer Soc. exp.Biol.) 10, 246 (1951).Google Scholar
  162. 162.
    Simmonds, S., E. L. Tatumand J. S. Fruton: The Utilization of Phenyl-alanine and Tyrosine Derivatives by Mutant Strains of Escherichia Coli. J. biol. Chemistry 169, 91 (1947).Google Scholar
  163. 163.
    Simpson, M. V., E. Farberand H. Tarver: Studies on Ethionine: Inhibition of Protein Synthesis in Intact Animals J biol. Chemistry 182, 81 (1950).Google Scholar
  164. 164.
    Smith, E. L.: Catalytic Action of Metal Peptidases. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 581 (1949).Google Scholar
  165. 165.
    Snore, J. E. and H. Neurath: Structural Requirements of Specific Substrates for Chymotrypsin. I. The Contribution of the Secondary Peptide Group. Arch. Biochemistry 21, 351 (1949)Google Scholar
  166. 166.
    Snoke, J. E. and F. Rothman: Glutathione Synthesis from Glutamyl Cysteine and Glycine. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 249 (1951).Google Scholar
  167. 167.
    Speck, J. F.: The Enzymatic Synthesis of Glutamine. J. biol. Chemistry 168, 403 (1947)Google Scholar
  168. 168.
    Speck, J. F.: The Synthesis of Glutamine in Pigeon Liver Dispersions. J. biol. Chemistry 179, 1387 (1949)Google Scholar
  169. 169.
    Speck, J. F.: The Enzymatic Synthesis of Glutamine; A Reaction Using Adenosine Triphosphate. J. biol. Chemistry 179, 1405 (1949).Google Scholar
  170. 170.
    Spector, H. and H. H. Mitchell: Paired Feeding in the Study of the Counteraction by Nicotinic Acid and Tryptophane of the Growth-Depressing Effect of Corn in Rats. J. biol. Chemistry 165, 37 (1946).Google Scholar
  171. 171.
    Spiegelman, S. and M. D. Kamen: Genes and Nucleoproteins in the Synthesis of Enzymes. Science (New York) 104, 581 (1946).Google Scholar
  172. 172.
    Spiegelman, S. and M. D. Kamen: Some Basic Problems in the Relation of Nucleic Acid Turnover in Protein Synthesis. Cold Spring Harbor Sympos. quantitat. Biol. 12, 211 (1947)Google Scholar
  173. 173.
    Sprinson, D. B. and D. Rittenberg: The Rate of Utilization of Ammonia for Protein Synthesis. J. biol. Chemistry 180, 707 (1949).Google Scholar
  174. 174.
    Sprinson, D. B. and D. Rittenberg: The Rate of Interaction of the Amino Acids of the Diet with the Tissue Proteins. J. biol. Chemistry 180, 715 (1949).Google Scholar
  175. 175.
    Stumpf, P. K. and W. D. Loomis: Observations on a Plant Amide Enzyme System Requiring Manganese and Phosphate. Arch. Biochemistry 25, 451 (1950).Google Scholar
  176. 176.
    Stumpf, P. K., W. D. Loomisand C. Michelson, Amide Metabolism in Higher Plants. I. Preparation and Properties of Glutamyl Transferase from Pumpkin Seedling. Arch. Biochemistry 30, 126 (1951).Google Scholar
  177. 177.
    Tarver, H. and W. O. Reinhardt: Methionine Labeled with Radioactive Sulfur as an Indicator of Protein Formation in the Hepatectomized Dog. J. biol. Chemistry 167, 395 (1947)Google Scholar
  178. 178.
    Tarver, H. and C. L. A. Schmidt: Radioactive Sulfur Studies. I. Synthesis of Methionine. II. Conversion of Methionine Sulfur to Taurine Sulfur in Dogs and Rats. III. Distribution of Sulfur in the Proteins of Animals Fed Sulfur or Methionine. IV. Experiments In Vitro with Sulfur and Hydrogen Sulfide. J. biol. Chemistry 146, 69 (1942).Google Scholar
  179. 179.
    Tauber, H. T.: Protein Synthesis by Chymotrypsin. J. Amer. chem. Soc 71, 2952 (1949)Google Scholar
  180. 180.
    Tauber, H. T.: Synthesis of High Molecular-Weight Protein-Like Substances by Chymotrypsin. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 237 (1950).Google Scholar
  181. 181.
    Tauber, H. T.: Synthesis of Protein-Like Substances by Chymotrypsin. J. Amer. chem. Soc. 73, 1288 (1951).Google Scholar
  182. 182.
    Tauber, H. T.: Synthesis of Protein-Like Substances by Chymotrypsin from Dilute Peptic Digests and their Electrophoretic Patterns. J. Amer. chem. Soc. 73, 4965 (1951).Google Scholar
  183. 183.
    Thorell, B.: The Relation of Nucleic Acids to the Formation and Differentiation of Cellular Proteins. Cold Spring Harbor Sympos. quantitat. Biol. 12, 247 (1947)Google Scholar
  184. 184.
    Totter, J. R., B. Kelley, P. L. Dayand R. R. Edwards: The Metabolism of Glycine by Folic Acid-Deficient Chick Liver Homogenates. J. biol. Chemistry 186, 145 (1950).Google Scholar
  185. 185.
    Tyner, E. P., C. Heidelbergerand G. A. Le Page: Rates and Synthesis and Turnover of Proteins and Nucleic Acid Purines in the Rat. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 262 (1951).Google Scholar
  186. 186.
    Van Slyke, D. D. and G. M. Meyer: The Effects of Feeding and Fasting on the Amino Acid Content of the Tissues J. biol. Chemistry 16, 231 (1913).Google Scholar
  187. 187.
    Vendrely, C., R. Vendrely: L’acide ribonucléique des mitochondries et des microsomes du foie et ses variations au cours du jeûne protéique. C. R. hebd. Séances Acad. Sci. 230, 333 (1950).Google Scholar
  188. 188.
    Vierordt, H.: Anatomische, physiologische and physikalische Daten and Tabellen. Jena. 1906.Google Scholar
  189. 189.
    Virtanen, A. I. and H. K. Kerkkonen: On the Chemical Nature of Plasteins. Acta chem. Scand. 5, 140 (1947).Google Scholar
  190. 190.
    Virtanen, A. I. and H. K. Kerkkonen: Structure of Plasteins. Nature (London) 161, 888 (1948).Google Scholar
  191. 191.
    Virtanen, A. I., H. K. Kerkkonen, M. Hakalaand T. Laaksonen: Die Synthese von Polypeptiden durch die Wirkung von Pepsin. Naturwiss. 37. 139 (1950).Google Scholar
  192. 192.
    Virtanen, A. I., H. K. Kerkkonen, T. Laaksonenand M. Hakala: Plastein, a Mixture of Higher-Molecular Polypeptides Synthesized by Proteolytic Enzymes. Acta chem. Scand. 3, 520 (1949).Google Scholar
  193. 193.
    Waelsch, H.: Glutamotransferase Activity in Mammalian Tissue Extracts. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 266 (1951).Google Scholar
  194. 194.
    Waelsch, H.: Glutamic Acid and Cerebral Function. Adv. Protein Chem. 6, 299 (1951).Google Scholar
  195. 195.
    Waelsch, H., E. Borek, N. Grossowiczand M. Scxou: Glutamo-and AspartoTransferases. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 242 (1950).Google Scholar
  196. 196.
    Waelsch, H., P. Owades, E. Borek, N. Grossowiczand M. Scxou: The Enzyme-Catalyzed Exchange of Ammonia with the Amide Group of Glutamine and Asparagine. Arch. Biochemistry 27, 237 (1950).Google Scholar
  197. 197.
    Waelsch, H. and D. Rittenberg: Glutathione. II. The Metabolism of Glutathione Studied with Isotopic Ammonia and Glutamic Acid. J. biol. Chemistry 144, 53 (1942).Google Scholar
  198. 198.
    Waldschmidt-Leitz, E. and K. Kühn: Über die enzymatische Synthese von Peptidbindungen. Hoppe-Seyler’s Z. physiol. Chem. 285, 22 (1950).Google Scholar
  199. 199.
    Wasteneys, H. and H. Boasook: The Enzymatic Synthesis of Protein. Physiologic. Rev. 10, 110 (1930).Google Scholar
  200. 200.
    Weissman, N. and R. Schoenheimer: The Relative Stability of L(+) Lysine in Rats Studied with Deuterium and Heavy Nitrogen. J. biol. Chemistry 140, 779 (1941).Google Scholar
  201. 201.
    Westerfield, W. W. and D. A. Richert: Dietary Effects on Liver Xanthine Oxidase. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 265 (1949).Google Scholar
  202. 202.
    Williams, J. N., Jr. and C. A. Elvehjem: The Relation of Amino Acid Availability in Dietary Protein to Liver Enzyme Activity. J. biol. Chemistry 181, 559 (1949)Google Scholar
  203. 203.
    Winnick, T.: Studies on the Mechanism of Protein Synthesis in Embryonic and Tumor Tissues. I. Evidence Relating to the Incorporation of Labeled Amino Acids into Protein Structure in Homogenates. Arch. Biochemistry 27, 65 (1950).Google Scholar
  204. 204.
    Winnick, T.: Studies on the Mechanism of Protein Synthesis in Embryonic and Tumor Tissues. II. Inactivation of Fetal Rat Liver Homogenates by Dialysis, and Reactivation by the Adenylic Acid System. Arch. Biochemistry 28, 338 (1950).Google Scholar
  205. 205.
    Winnick, T., F. Friedberg and D. M. Greenberg: Incorporation Of C14-Labeled Glycine into Intestinal Tissue and its Inhibition by Azide. Arch. Biochemistry 55, 160 (1947)Google Scholar
  206. Winnick, T., F. Friedbergand D. M. Greenberg: Studies in Protein Metabolism with Compoands Labeled with Radioactive Carbon. I. Metabolism of DL-Tyrosine in the Normal and Tumor-Bearing Rat. J. biol. Chemistry 173, 189 (1948).Google Scholar
  207. 207.
    Winnick, T., F. Friedbergand D. M. Greenberg: The Utilization of Labeled Glycine in the Process of Amino Acid Incorporation by the Protein of Liver Homogenate. J. biol. Chemistry 175, 117 (1948).Google Scholar
  208. 208.
    Winnick, T., E. A. Petersonand D. M. Greenberg: Incorporation of C14-Glycine into Protein and Lipide Fractions of Homogenates. Arch. Biochemistry 21, 235 (1949).Google Scholar
  209. 209.
    Woodward, G. E.: S85-Glutathione Preparation from Yeast and Tracer Studies in Cancerous and Non-Cancerous Rats. J. Franklin Inst. 251, 557 (1951).Google Scholar
  210. 210.
    Work, T. S. and E. Work: The Basis of Chemotherapy, p. 227. New York: Interscience Publ. 1948.Google Scholar
  211. 211.
    Yeshoda, K. M. and M. Damodaran: Amino-Acids and Proteins in Haemoglobin Formation. Biochemic. J. 41, 382 (1947).Google Scholar
  212. 212.
    Zamecnik, P. C.: The Use of Labeled Amino Acids in the Study of the Protein Metabolism of Normal and Malignant Tissues: A Review. Cancer Res. 10, 659 (1950)Google Scholar
  213. 213.
    Zamecnik, P. C. and I. D. Frantz, Jr.: Peptide Bond Synthesis in Normal and Malignant Tissue. Cold Spring Harbor Sympos. quantitat. Biol. 14, 199 (1949)Google Scholar
  214. 214.
    Zamecnik, P. C., I. D. Frantz, Jr., R. B. Loftfieldand M. L. Stephenson: Incorporation In Vitro of Radioactive Carbon from Carboxyl-Labeled DL-Alanine and Glycine into Proteins of Normal and Malignant Rat Livers. J. biol. Chemistry 175, 299 (1948).Google Scholar

Copyright information

© Wien · Springer-Verlag 1952

Authors and Affiliations

  • H. Borsook
    • 1
  1. 1.PasadenaUSA

Personalised recommendations