Advertisement

Abstract

Snake venoms are viscous liquids which contain poisonous and nonpoisonous proteins as well as other organic and inorganic substances. If we could isolate each of these components, particularly the toxic ones, and clarify their constitution, chemistry’s task would be fulfilled in this field. Then, after determination of the biological and pharmacological actions of each of these pure substances, the total activity of the approximately 400 different snake venoms could be explained. Unfortunately, we are as yet far from this goal.

Keywords

Ammonium Sulfate Snake Venom Crude Venom Cobra Venom Poison Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acton, H. W. and R. Knowles: Snakes and Snake Poisoning. In: The Practice of Medicine in the Tropics, by W. Byam and R. B. Archibald. Vol. 1. London: Frowde and Hodder a. Stoughton. 1921.Google Scholar
  2. 2.
    Amaral, A. Do: Die Schlangen in der Wissenschaft. Medizinische Welt 9, 743 (1935).Google Scholar
  3. 3.
    Amaral, A. Do: Animais veníferos, venenos e antivenenos. São Paulo: Caça e pesca, Editora Ltd. 1945.Google Scholar
  4. 4.
    Amaral, A. Do: Snake Venom Poisoning. Textbook of Medicine by R. L. Cecil and R. F. Loeb. 8th ed. Philadelphia: W. B. Saunders Co. 1951.Google Scholar
  5. 5.
    Amorin, M. F. and R. F. Mello: Intermediate Nephron Nephrosis from Snake Poisoning in Man, Amer. J. Pathol. 30, 479 (1954).Google Scholar
  6. 6.
    Anfinsen, C. B., R. R. Redfield, W. L. Choate, J. Page, and W. R. Carrol: Studies of the Gross Structure, Cross-linkage and Terminal Sequences in Ribonuclease. J. Biol. Chem. 207, 202 (1954).Google Scholar
  7. 7.
    Anson, M. L.: The Estimation of Pepsin, Papain and Cathepsin with Hemoglobin. J. Gen. Physiol. 22, 79 (1939).Google Scholar
  8. 8.
    Arthus, M.: De Fanaphylaxie à L’imunité. Paris: Masteon et Cie. 1921.Google Scholar
  9. 9.
    Arthus, M.: Traité de physiologie normale et pathologique, vol. 1, p. 1113, ed. G. H. Roger et L. Binet. Paris: Masson et Cie. 1933.Google Scholar
  10. 10.
    Barrio, A.: Variaciones en el contenido de riboflavina y 1-ofi-amino ácidooxidasa en Crotalidae de la Argentina. Ciencie e Investigación 8, 36 (1952).Google Scholar
  11. 11.
    Bhattacharya, K. L.: Effect of Snake Venoms on Co-enzyme-1. J. Indian Chem. Soc. 30, 685 (1953).Google Scholar
  12. 12.
    Bier, O. G.: Estudo quantitativo da reação de floculação entre o antiveneno crotálico e uma fração purificada do veneno da cascavel neotrópica (Crotalus t. terrificus). Mem. Inst. Butantan 20, 31 (1947).Google Scholar
  13. 13.
    Bier, O. G.: Étude quantitative de la neutralisation des toxines par les antitoxines et des venins par les antivènins. Revue Canad. biol. 6, 729 (1947).Google Scholar
  14. 14.
    Bonaparte, L. L., Prince: Analyse du venin de vipère et découverte de la vipérine. Gaz. Tosc. Sci. med.-fis. (Firenze) 1843, 169.Google Scholar
  15. 15.
    Boquet, P.: Venins de serpents et antivenins. Paris: Ed. médicales Flameron. 1948.Google Scholar
  16. 16.
    Bragança, B. M. and J. H. Quastel: Amino Acid Oxidations by Snake Venoms. Biochemic. J. 53, 88 (1953).Google Scholar
  17. 17.
    Brooks, G.: Étude chimique et spectrographique de la fluorescence des venins de serpents. C. R. hebd. Séances Acad. Sci. 209, 248 (1939).Google Scholar
  18. 18.
    Calmette, A.: Les venins, les animaux vénimeux et la sérathérapie antivénimeuse. Paris: Masson et Cie. 1907.Google Scholar
  19. 19.
    Césari, E., J. Bauche et P. Boquet: Sur une race de vipère aspic (Vipera aspis) à venin blanc. C. R. hebd. Séances Acad. Sci. 201, 683 (1935).Google Scholar
  20. 20.
    Chain, E.: Effect of Snake Venoms on Glycolysis and Fermentation in Cell-free Extracts. Quart. J. exp. Physiol. 26, 300 (1937).Google Scholar
  21. 21.
    Chain, E.: Inhibition of Dehydrogenases by Snake Venom. Biochemic. J. 33, 407 (1939).Google Scholar
  22. 22.
    Chain, E. and E. S. Duthie: Identity of Hyaluronidase and Spreading Factor. Brit. J. exp. Pathol. 21, 324 (1940).Google Scholar
  23. 23.
    Chain, E. and L. J. Goldworthy: Studies on the Chemical Nature of the Antifermenting Principle in Black Tiger Snake Venom. Quart. J. exp. Physiol. 27, 375 (1938).Google Scholar
  24. 24.
    Chatterjee, A. K.: Snake Venoms. I. The Isolation of an Inhibitor from Cobra Venom. Indian J. med. Res. 37, 241 (1949).Google Scholar
  25. 25.
    Chatterjee, A. K.: Studies on Snake Venoms. II. The Mechanism of Inhibition of the Cytochromeoxydase System Caused by an Active Principle isolated from Cobra Venom. Ann. Biochem. exp. Med. 12, 79 (1952).Google Scholar
  26. 26.
    Chaudhuri, D. K.: Isolation of Cholinesterase from Cobra Venom (Naja tripudians). Science and Culture (India) 8, 5 (1942).Google Scholar
  27. 27.
    Chaudhuri, D. K.: Cholinesterase. Ann. Biochem. exp. Med. 4, 77 (1944).Google Scholar
  28. 28.
    Chaudhuri, D. K.: Studies on Cholinesterase. Ann. Biochem. exp. Med. 6, 91 (1946).Google Scholar
  29. 29.
    Chaudhuri, D. K.: Cholinesterase. III. Specificity of Cholinesterase. Ann. Biochem. exp. Med. 9, 67 (1949).Google Scholar
  30. 30.
    Chaudhuri, D. K.: Cholinesterase. IV. Influence of Temperature and Irradiation on the Activity of Cholinesterase. Ann. Biochem. exp. Med. 9, 73 (1949).Google Scholar
  31. 31.
    Chaudhuri, D. K.: Cholinesterase. V. Effect of Substrate Concentration and Temperature on the Rate of Hydrolysis. Ann. Biochem. exp. Med. 9, 79 (1949).Google Scholar
  32. 32.
    Chaudhuri, D. K.: Cholinesterase. VI. Optimum pH and Stability in Relation to pH. Ann. Biochem. exp. Med. 9, 85 (1949).Google Scholar
  33. 33.
    Chaudhuri, D. K.: Cholinesterase. VII. Effect of Different Chemicals on the Activity of Crude and Pure Cholinesterase. Ann. Biochem. exp. Med. 10, 65 (1950).Google Scholar
  34. 34.
    Chaudhuri, D. K.: Cholinesterase. VIII. Reversible Inactivation of Cholinesterase. Ann. Biochem. exp. Med. 10, 71 (1950).Google Scholar
  35. 35.
    Christensen, P. and D. J. Finney: Standardization of Cobra (Naja flava) Venom using the Graded Response Method. J. Immunology 70, 7 (1953).Google Scholar
  36. 36.
    Contardi, A. und A. Ercoli: Über die enzymatische Spaltung der Lecithine und Lysocithine. Biochem. Z. 261, 275 (1933).Google Scholar
  37. 37.
    Cowan, S. L. and H. R. Ing: The Effect of Quaternary Ammonium Salts upon Nerve. J. Physiol. 79, 75 (1933).Google Scholar
  38. 38.
    Dale, H. H., W. Feldberg, and M. Vogt: Release of Acetylcholine of Voluntary Motor Nerve Endings. J. Physiol. 86, 353 (1936).Google Scholar
  39. 39.
    De, S. S.: Studies on Haemolysin of Cobra Venom. I. Investigations on the Isolation of Haemolysin from Cobra (Naja naja) Venom. Ind. J. med. Res. 27, 531 (1939).Google Scholar
  40. 40.
    De, S. S.: Studies on Haemolysin of Cobra Venom. II. Effect of Different Substances on the Activity of Cobra Haemolysin. Ind. J. med. Res. 27, 793 (1940).Google Scholar
  41. 41.
    De, S. S.: Studies on Haemolysin of Cobra Venom. III. Reversible Inactivation of Haemolysin of Cobra Venom. Ind. J. med. Res. 27, 807 (1940).Google Scholar
  42. 42.
    De, S. S.: Crystalline Haemolysin from Cobra (Naja naja) Venom. Science and Culture (India) 6, 675 (1941).Google Scholar
  43. 43.
    De, S. S.: Antigenic Properties of Crystalline Haemolysin. Ann. Biochem. exp. Med. 2, 237 (1942).Google Scholar
  44. 44.
    De, S. S.: Physiochemical Studies on Haemolysin. I. Crystalline Haemolysin. Ann. Biochem. exp. Med. 4, 45 (1944).Google Scholar
  45. 45.
    De, S. S.: Physicochemical Studies on Haemolysin. II. pH and Heat Stability of Haemolysin. J. Indian Chem. Soc. 21, 290 (1944).Google Scholar
  46. 46.
    De, S. S.: Physicochemical Studies on Haemolysin. III. Isoelectric Point of Haemolysin. J. Indian Chem. 21, 292 (1944).Google Scholar
  47. 47.
    De, S. S.: Physicochemical Studies on Haemolysin. IV. Molecular Weight of Haemolysin. J. Indian Chem. Soc. 21, 307 (1944).Google Scholar
  48. 48.
    De, S. S.: Physicochemical Studies on Haemolysin. V. On the Composition of Haemolysin. J. Indian Chem. Soc. 22, 10 (1945).Google Scholar
  49. 49.
    De, S. S. and B. N. Ghosh: Studies in Adsorption of the Neurotoxin and Haemolysin of Cobra (Naja naja) Venom by Various Adsorbents at Different pH, with a View to their Isolation. J. Indian Chem. Soc. 14, 748 (1937).Google Scholar
  50. 50.
    Delezenne, C.: Le zinc constituant cellulaire de l’organisme animal. Sa présence et son rôle dans le venin des serpents. Ann. Inst. Pasteur 33, 6 (1919).Google Scholar
  51. 51.
    Delezenne, C. et E. Fourneau: Constitution du phosphatide hémolysant (lysocithine) provenant de l’action du venin de cobra sur le vitellus de l’oeuf de poule. Bull. soc. chim. France 15, 421 (1914).Google Scholar
  52. 52.
    Delezenne, C. et S. Ledebt: Action du venin de cobra sur le sérum de cheval. Ses rapports avec l’hémolyse. C. R. hebd. Séances Acad. Sci. 152, 790 (1911);Google Scholar
  53. 52a.
    Delezenne, C. et S. Ledebt: Formation de substances hémolytiques et de substances toxiques aux dépens du vitellus de l’oeuf soumis à l’action du cobra. C. R. hebd. Séances Acad. Sci. 153, 81 (1911);Google Scholar
  54. 52b.
    Delezenne, C. et S. Ledebt: Nouvelle contribution à l’étude des substances hémolytiques dérivées du sérum et du vitellus de l’oeuf, soumis à l’action des venins. C. R. hebd. Séances Acad. Sci. 155, 1101 (1912).Google Scholar
  55. 53.
    Ditmars, R. L.: Snakes of the World. New York: Macmillan Co. 1951.Google Scholar
  56. 54.
    Duran-Reynals, F.: Spreading Factor in Certain Snake Venoms and its Relation to their Mode of Action. J. exp. Medicine 69, 69 (1939).Google Scholar
  57. 55.
    Eagle, H.: The Coagulation of Blood by Snake Venoms and its Physiologic Significance. J. exp. Medicine 65, 613 (1937).Google Scholar
  58. 56.
    Eichbaum, F. W.: Hemaglutininas nos venenos de serpentes sulamericanas. Mem. Inst. Butantan 19, 229 (1946).Google Scholar
  59. 57.
    Eichbaum, F. W.: Ação dermatotóxica de venenos ofídicos e sua neutralisação pelos antivenenos. Mem. Inst. Butantan 20, 79 (1947).Google Scholar
  60. 58.
    Eichbaum, F. W.: O fator de difusão (“spreading factor”) dos venenos de Bothrops jararaca e Crotalus t. terrificus. Mem. Inst. Butantan 20, 95 (1947).Google Scholar
  61. 59.
    Eichbaum, F. W. and H. Stammreich: Oxidizing Agents in Snake Venoms. An. Acad, brasil. Ciênc. 23, 91 (1951).Google Scholar
  62. 60.
    Essex, H. E.: Certain Animal Venoms and their Physiologic Action. Physiol. Rev. 25, 148 (1945).Google Scholar
  63. 61.
    Essex, H. E. and J. Markowitz: The Physiologic Actio: of Rattlesnake Venom (Crotalin). I. Effect on Blood Pressure: Symptoms and Postmortem Observations. Amer. J. Physiol. 92, 317 (1930);Google Scholar
  64. 61a.
    Essex, H. E. and J. Markowitz: The Physiologic Actio: of Rattlesnake Venom (Crotalin). II. The Effect of Crotalin on Surviving Organs. Amer. J. Physiol. 92, 329 (1930);Google Scholar
  65. 61b.
    Essex, H. E. and J. Markowitz: The Physiologic Actio: of Rattlesnake Venom (Crotalin). VII. The Similarity of Crotalin Shock and Anaphylactic Shock. Amer. J. Physipl. 92, 698 (1930);Google Scholar
  66. 61c.
    Essex, H. E. and J. Markowitz: The Physiologic Actio: of Rattlesnake Venom (Crotalin). VIII. A. Comparison of the Physiologic Action of Crotalin and Histamine. Amer. J. Physiol. 92, 705 (1930).Google Scholar
  67. 62.
    Fairbairn, D.: The Phospholipase of the Venom of the Cottonmouth Mocassin (Agkistrodon piscivoras L.). J. Biol. Chem. 157, 633 (1945).Google Scholar
  68. 63.
    Faust, E. St.: Über das Ophiotoxin aus dem Gifte der ostindischen Brillenschlange, Cobra di Capello (Naja tripudians). Arch. exp. Pathol. Pharmakol. 56, 236 (1907).Google Scholar
  69. 64.
    Faust, E. St.: Über das Crotalotoxin aus dem Gifte der nordamerikanischen Klapperschlange (Crotalus adamanteus). Arch. exp. Pathol. Pharmakol. 64, 244 (1911).Google Scholar
  70. 65.
    Faust, E. St.: Tierische Gifte. In: Handbuch der experimentellen Pharmakologie von A. Heffter, 2. Band, 2. Hälfte, S. 1782. Berlin: J. Springer. 1924.Google Scholar
  71. 66.
    Favilli, G.: Mucolytic Effect of Several Diffusing Agents and Diazotized Compounds. Nature (London) 145, 866 (1940).Google Scholar
  72. 67.
    Feldberg, W., H. F. Holden, and C. H. Kellaway: The Formation of Lysocithin and a Muscle-stimulating Substance by Snake Venom. J. Physiol. 94, 232 (1938).Google Scholar
  73. 68.
    Feldberg, W. and C. H. Kellaway: Liberation of Histamine from the Perfused Lung by Snake Venoms. J. Physiol. 90, 257 (1937).Google Scholar
  74. 69.
    Finney, D. J.: Probit Analysis. 2nd ed. London: Cambridge Univ. Press. 1952;Google Scholar
  75. 69a.
    Finney, D. J.: Statistical Method in Biological Assay, New York: Hafner Publ. Co. 1952.Google Scholar
  76. 70.
    Fischer, F. G. und H. Dörfbl: Zur quantitativen Auswertung der Papier-chromatogramme von Eiweiß-Hydrolysaten. Biochem. Z. 324, 544 (1953).Google Scholar
  77. 71.
    Fischer, F. G. und H. Dörfbl: Adenosin im Gift der Puffotter Bitis arietans (Schlangengifte. I). Z. physiol. Chem. (Hoppe-Seyler) 296, 232 (1954).Google Scholar
  78. 72.
    Fischer, F. G. und H. Dörfbl: Die Aminosäuren-Zusammensetzung von Crotoxin (Schlangengifte. IV), Z. physiol. Chem. (Hoppe-Seyler) 397, 278 (1954).Google Scholar
  79. 73.
    Fischer, F. G. und W. P. Neumann: Die elektrophoretische Analyse der Gifte von Naja haje und Naja nigricollis (Schlangengifte. II). Z. physiol. Chem. (Hoppe-Seyler) 397, 92 (1954).Google Scholar
  80. 74.
    Fischer, F. G. und W. P. Neumann: Die elektrophoretische Analyse der Gifte von Bitis arietans und Echis carinatus (Schlangengifte. III). Z. physiol. Chem. (Hoppe-Seyler) 297, 100 (1954).Google Scholar
  81. 75.
    Fleckenstein, A., G. Berg, J. Gayer und S. Schoenig: Über die Dehydrasenhemmung durch Schlangengift und die Inaktivierung des Dehydrasenhemmenden Prinzips durch antitoxische Sera. Arch. exp. Pathol. Pharmakol. 213, 265 (1951).Google Scholar
  82. 76.
    Fleckenstein, A. und H. Gerhardt: Über die biologische Bedeutung des hohen Zinkgehalts in Schlangengiften. Zink als Schlangengift-Inhibitor. Arch. exp. Pathol. Pharmakol. 214, 135 (1952).Google Scholar
  83. 77.
    Fleckenstein, A. und W. Jaeger: Weitere Ergebnisse über die Blockierung der Bienengift- und Schlangengiftwirkung durch Zinksalze. Arch. exp. Pathol. Pharmakol. 215, 163 (1952).Google Scholar
  84. 78.
    Folin, O. and V. Ciocalteu: On Tyrosine and Tryptophan Determinations in Proteins. J. Biol. Chem. 73, 627 (1927).Google Scholar
  85. 79.
    Fonseca, F. da: Animais peçonhentos. Sao Paulo: Inst. Butantan. 1949.Google Scholar
  86. 80.
    Fraenkel-Conrat, H. L.: Intern. Confer. Animal Venoms. Berkeley. 1954.Google Scholar
  87. 81.
    Fraenkel-Conrat, H. and M. Cooper: The Use of Dyes for the Determination of Acid and Basic Groups in Proteins. J. Biol. Chem. 154, 239 (1944).Google Scholar
  88. 82.
    Fraenkel-Conrat, H. and J. Fraenkel-Conrat: Inactivation of Crotoxin by Group-specific Reagents. Biochim. Biophys. Acta 5, 98 (1950).Google Scholar
  89. 83.
    Franklin, A. E., J. H. Quastel, and S. F. van Straten: Paper Chromatography of Protein Mixtures and Blood Plasmas. Proc. Soc. exp. Biol. Med, 77, 783 (1951).Google Scholar
  90. 84.
    Ganguly, S. N.: Mechanism of the Coagulant Action of Daboia Venom on Blood. Indian J. med. Res. 24, 525 (1936).Google Scholar
  91. 85.
    Ganguly, S. N.: Haemolysis by the Venom of the Indian Cobra (Naja tripudians). Indian J. med. Res. 24, 1165 (1937).Google Scholar
  92. 86.
    Ganguly, S. N. and M. T. Malkana: Studies on Indian Shake Venoms. I. Daboia Venom: its Chemical Composition, Protein Fractions and their Physiological Action. Indian J. med. Res. 23, 997 (1936).Google Scholar
  93. 87.
    Ganguly, S. N. and M. T. Malkana: Studies on Indian Snake Venoms. II. Cobra Venom: its Chemical Composition, Protein Fractions and their Physiological Actions. Indian J. med. Res. 24 281 (1936).Google Scholar
  94. 88.
    Gautrelet, J. et N. Halpern: Action du. venin de Cobra sur l’excitabilité neuromusculaire de la Grenouille. C. R. Séances Soc. Biol. 113, 1486 (1933).Google Scholar
  95. 89.
    Ghosh, B. N.: The Enzymes in Snake Venom. I. Their Action on Haemoglobin and on Protein Solutions of Different pH. J. Indian chem. Soc. 13, 450 (1936).Google Scholar
  96. 90.
    Ghosh, B. N.: Die Enzyme der Schlangengifte. Österr. Chem.-Ztg. 43, 158 (1940).Google Scholar
  97. 91.
    Ghosh, B. N.: Therapeutic Use of Snaie Venom. Indian and Eastern Chemist 22, 187, 207 (1941).Google Scholar
  98. 92.
    Ghosh, B. N. and K. L. Bhattacharya: Presence of Inhibitor of Pyruvic Dehydrogenase in some Snake Venoms. Science and Culture (India) 18, 253 (1952).Google Scholar
  99. 93.
    Ghosh, B. N. and A. K. Chatterjee: Effect of Snake Venoms on the Oxidation of Glucose and its Metabolites in Cell Suspensions. J. Indian Chem. Soc. 25, 360 (1948).Google Scholar
  100. 94.
    Ghosh, B. N., A. K. Chatterjee, and A. C. Sinha: Effect of Snake Venom on the Cytochrome-Cytochrome Oxidase System. J. Indian Chem. Soc. 25, 384 (1948).Google Scholar
  101. 95.
    Ghosh, B. N. and D. K. Chaudhuri: Enzymes in Snake Venom. IV. J. Indian Chem. Soc. 15, 566 (1938).Google Scholar
  102. 96.
    Ghosh, B. N. and D. K. Chaudhuri: Estimation of Some of the Amino Acids in Cobra (Naja naja) Neurotoxin, j. Indian Chem. Soc. 20, 22 (1943).Google Scholar
  103. 97.
    Ghosh, B. N. and S. S. De: Effectof Snake Venom on the Action of Trypsin and Pancreatic Juice. Science and Culture (India) 2, 223 (1936).Google Scholar
  104. 98.
    Ghosh, B. N. and D. K. Chaudhuri: The Migration of the Toxic Constituents of Cobra (Naja naja) Venom at Various pH in an Electric Field. Indian J. med. Res. 24, 1175 (1937).Google Scholar
  105. 99.
    Ghosh, B. N. and D. K. Chaudhuri: Partial Purification of the Toxic Components of Cobra (Naja naja) Venom. Science and Culture (India) 2, 585 (1937).Google Scholar
  106. 100.
    Ghosh, B. N. and D. K. Chaudhuri: Determination of the Isoelectric Point of the Neurotoxin of Russel Viper Venom. Science and Culture (India) 3, 297 (1937).Google Scholar
  107. 101.
    Ghosh, B. N. and D. K. Chaudhuri: Investigation on the Isolation of the Neurotoxin and Haemolysin in Cobra (Naja naja) Venom. Indian J. med. Res. 25, 779 (1938).Google Scholar
  108. 102.
    Ghosh, B. N. and D. K. Chaudhuri: Proteins of Rattlesnake Venom. Nature (London) 143, 380 (1939).Google Scholar
  109. 103.
    Ghosh, B. N., S. S. De, and D. P. Bhattacharya: Partial Separation of the Neurotoxin of Russel Viper Venom. Science and Culture (India) 3, 298 (1937).Google Scholar
  110. 104.
    Ghosh, B. N., S. S. De, and D. P. Bhattacharya: Investigations on the Isolation of the Active Principles from the Venoms of Bungarus fasciatus and Vipera russellii. Indian J. med. Res. 26, 753 (1939).Google Scholar
  111. 105.
    Ghosh, B. N., S. S. De, and D. K. Chaudhuri: Destruction of the Neurotoxin of Cobra (Naja naja) and Daboia (Vipera russellii) Venom by Various Reducing Agents. Science and Culture (India) 4, 198 (1938).Google Scholar
  112. 106.
    Ghosh, B. N., S. S. De, and D. K. Chaudhuri: Separation of the Neurotoxin from the Crude Cobra Venom and Study of the Action of a Number of Reducing Agents on it. Indian J. med. Res. 29, 367 (1941).Google Scholar
  113. 107.
    Ghosh, B. N., S. S. De, and D. K. Chaudhuri: Enzymes in Snake Venom. Ann. Biochem. exp. Med. 1, 31 (1941);Google Scholar
  114. 107a.
    Ghosh, B. N., S. S. De, and D. K. Chaudhuri: Enzymes in Snake Venom. Trop. Diseases Bull. 39, 718 (1942).Google Scholar
  115. 108.
    Ghosh, B. N., S. S. De, and N. L. Kundu: The Separation of Neurotoxin from the Crude Cobra (Naja naja) Venom. Science and Culture (India) 4, 133 (1938).Google Scholar
  116. 109.
    Ghosh, B. N., S. S. De, and N. K. Sarkar: Effect of Cobra (Naja naja) Venom and its Constituents on the Synthesis of Acetylcholine by the Brain Cells of the Rats and Pigeons. J. Indian Chem. Soc. 21, 93 (1944).Google Scholar
  117. 110.
    Glick, D. and B. Sylvén: Evidence for the Heparin Nature of the Nonspecific Hyaluronidase Inhibitor in Tissue Extracts and Blood Serum. Science (Washington) 113, 388 (1951).Google Scholar
  118. 111.
    Goldberg, A. and E. Haas: Separation of Antinvasin in two Components. J. Biol. Chem. 170, 757 (1947).Google Scholar
  119. 112.
    Gonçalves, J. M. and A. Polson.: Thé Electrophoretic Analysis of Snake Venoms. Arch. Biochem. 13, 253 (1947).Google Scholar
  120. 113.
    Gonçalves, J. M. and L. G. Vieira: Estudos sôbre venenos de serpentes brasileiras. I. Análise electroforética. An. Acad. bras. Ciênc. 22, 141 (1950).Google Scholar
  121. 114.
    Gralén, N. and T. Svedberg: The Molecular Weight of Crotoxin. Biochem. J. 32, 1375 (1938).Google Scholar
  122. 115.
    Grasset, E.: La vipère du Gabon. Acta tropica 3, 97 (1946).Google Scholar
  123. 116.
    Grassmann, W. und K. Hannig: Elektrophoretische Untersuchungen an Schlangen- und Insektentoxinen. Z. physiol. Chem. (Hoppe-Seyler) 296, 30 (1954).Google Scholar
  124. 117.
    Gulland, J. M. and E. M. Jackson: Phosphoesterases of Bone and Snake Venoms. Biochemic. J. 32, 590 (1938);Google Scholar
  125. 117a.
    Gulland, J. M. and E. M. Jackson: Phosphoesterases of Bone and Snake Venoms. 5-Nucleotidase. Biochemic. J. 32, 597 (1938); The Constitution of Yeast Nucleic Acid. J. Chem. Soc. (London) 1938, 1492.Google Scholar
  126. 118.
    Gulland, J. M. and E. O. Walsh: The Constitution of Yeast Ribonucleic Acid. IX. Alkali-labil Linkages. J. Chem. Soc. (London) 1945, 172.Google Scholar
  127. 119.
    Haas, E.: On the Mechanism of Invasin. I. Antinvasin I, an Enzyme in Plasma; J. Biol. Chem. 163, 63,(1946).Google Scholar
  128. 119a.
    Haas, E.: On the Mechanism of Invasin. I. II. Proinvasin I, an Enzyme in Pathogenic Bacteria and in Venoms;J. Biol. Chem.163, 89, (1946).Google Scholar
  129. 119b.
    Haas, E.: On the Mechanism of Invasin. I. III. Antinvasin II, an Enzyme in Plasma. J. Biol. Chem. 163, 101 (1946).Google Scholar
  130. 120.
    Habermann, E.: Zur pharmakologischen Charakterisierung elektrophoretischer Fraktionen der Gifte von Naja nigricollis und Naja haje. Z. physiol. Chem. (Hoppe-Seyler) 297, 104 (1954).Google Scholar
  131. 121.
    Habermann, E. und W. Neumann: Die Hemmung der Hitzekoagulation von Eigelb durch Bienengift — ein Phospholipase-Effekt. Z. physiol. Chem, (Hoppe-Seyler) 297, 179 (1954).Google Scholar
  132. 122.
    Hestrin, S.: The Reaction of Acetylcholine and other Carboxylic Acid Derivates with Hydroxylamine and its Analytical Application. J. Biol. Chem. 180, 249 (1949).Google Scholar
  133. 123.
    Holden, H. F.: Haemolysis by Australian Snake Venoms. 3. Some Factors which Influence the Action of the Venom of the Copperhead. Austral. J. exp. Biol. med. Sci. 13, 103 (1935).Google Scholar
  134. 124.
    Höxter, G.: In: K. Slotta, Zur Chemie der Schlangengifte. Experientia 9, 81 (1953).Google Scholar
  135. 125.
    Hughes, A.: The Action of Snake Venoms on Surface Films. Biochemic. J. 29, 437 (1935).Google Scholar
  136. 126.
    Hurst, R. O. and G. C. Butler: The Chromatographic Separation of Phosphatases in Snake Venoms. J. Biol. Chem. 193, 91 (1951).Google Scholar
  137. 127.
    Hurst, R. O., J. A. Little, and G. C. Butler: The Enzymatic Degradation of Thymonucleic Acid. II. The Hydrolysis of Oligonucleotides. J. Biol. Chem. 188, 705 (1951).Google Scholar
  138. 128.
    Iyengar, N. K., K. B. Sehra, B. Mukerji, and R. N. Chopra: Cholinesterase in Cobra Venom. Current Sci. (India) 7, 51 (1938).Google Scholar
  139. 129.
    Jánszky, B.: Action of the Venom of Bothrops atrox on Fibrinogen. Science (Washington) 110, 307 (1949).Google Scholar
  140. 130.
    Jánszky, B.: The Relation Between the Proteolytic and Blood Clotting Activity of Snake Venoms. Arch. Biochemistry 28, 139 (1950).Google Scholar
  141. 131.
    Johnson, M., M. A. G. Kaye, R. Hems, and H. A. Krebs: Enzymic Hydrolysis of Adenosine Phosphates by Cobra Venom. Biochemic. J. 54, 625 (1953).Google Scholar
  142. 132.
    Kaiser, E.: Untersuchungen über den Trypsin- und Hyaluronidase-Inhibitor des menschlichen Serums. Biochem. Z. 324, 344 (1953).Google Scholar
  143. 133.
    Kaiser, E.: Fermentchemische Untersuchungen an Spinnengiften. Monatsh. Chem. 84, 482 (1953).Google Scholar
  144. 134.
    Kellaway, C. H.: The Action of Australian Snake Venoms on Plain Muscle. Brit. J. exp. Pathol. 10, 281 (1929).Google Scholar
  145. 135.
    Kellaway, C. H.: The Venom of the Ornamented Snake Denisonia maculata. Austral. J. exp. Biol. med. Sci. 12, 47 (1934).Google Scholar
  146. 136.
    Kellaway, C. H.: Some Peculiarities of Australian Snake Venoms. Trans. Roy. Soc. Trop. Med. 27, 9 (1933).Google Scholar
  147. 137.
    Kellaway, C. H.: Animal Poisons. Annu. Rev. Biochem. 8, 541 (1939).Google Scholar
  148. 138.
    Kellaway, C. H. and E. R. Trethewie: A Note on the Extraction of Adenyl Compounds from Tissues. Austral. J. exp. Biol. med. Sci. 18, 265 (1940).Google Scholar
  149. 139.
    Klobusitzky, D. v.: Biochemische Studien über die Gifte der Schlangengattung Bothrops. I. Mitt. Die blutgerinnungsfördernde Wirkung und die Reinigung des Giftdrüsensekretes der Bothrops jararaca. Arch. exp. Pathol. Pharmakol. 179, 204 (1935).Google Scholar
  150. 140.
    Klobusitzky, D. v.: Biochemische Studien über die Gifte der Schlangengattung Bothrops. II. Mitt. Eine verbesserte Methode zur Herstellung von Bothropotoxin. Arch. exp. Pathol. Pharmakol. 180, 479 (1936).Google Scholar
  151. 141.
    Klobusitzky, D. v. und P. König: Biochemische Studien über die Gifte der Schlangengattung Bothrops. III. Mitt. Die Trennung der gerinnungsfördernden Substanz von dem Bothropstoxin und den übrigen Sekretbestandteilen. Arch. exp. Pathol. Pharmakol. 181, 387 (1936).Google Scholar
  152. 142.
    Klobusitzky, D. v. und P. König: Biochemische Studien über die Gifte der Schlangengattung Bothrops. IV. Mitt. Die Wirkung der gerinnungsfördernden Substanz in vivo. Arch. exp. Pathol. Pharmakon 182, 577 (1936).Google Scholar
  153. 143.
    Klobusitzky, D. v. und P. König: Biochemische Studien über die Gifte der Schlangengattung Bothrops. V. Mitt. Über den Stickstoff- und Schwefelgehalt des Bothropotoxin. Z. physiol. Chem. (Hoppe-Seyler) 255, I–III (1938).Google Scholar
  154. 144.
    Klobusitzky, D. v. und P. König: Biochemische Studien über die Gifte der Schlangengattung Bothrops, VI. Mitt. Kurzer Bericht über verschiedene, in den Jahren 1936 bis 1937 gewonnene Versuchsergebnisse. Arch. exp. Pathol. Pharmakol. 192, 271 (1939).Google Scholar
  155. 145.
    Kohlschütter, E. und W. Minning: Ein Fall von Spättod nach Biß der südamerikanischen Viper Lachesis alternatus. Dtsch. med. Wschr. 1936, 2043.Google Scholar
  156. 146.
    Kunitz, M.: A Spectophotometric Method for the Measurement of Ribonuclease Activity. J. Biol. Chem. 164, 565 (1946).Google Scholar
  157. 147.
    Li, G. H.: Ins K. Slotta “Zur Chemie der Schlangengifte”. Experientia 9, 81 (1953).Google Scholar
  158. 148.
    Li, C. H. and H. Fraenkel-Conrat: Electrophoresis of Crotoxin. J. Amer. Chem. Soe. 64, 1586 (1942).Google Scholar
  159. 149.
    Link, Th.: Der-Einfluß der Schlangengifte auf die Blutgerinnung. Z. Immunitätsforschnng 85, 504 (1935).Google Scholar
  160. 150.
    Maass, Th. A.: Schlangen und Schlangen-Gifte. Tabulae Biologicae Periodicae, vol. 3 (= Tabulae Biologicae vol. IX, p. 105). 1934.Google Scholar
  161. 151.
    Madinaveitia, J.: Diffusing Factors. 7. Concentration of the Mucinase from Testicular Extracts and from Crotalus atrox Venom. Biochemic. J. 35, 447 (1941).Google Scholar
  162. 152.
    Madinaveitia, J. and T. H. H. Quibell: Diffusing Factors. 9. The Effect of Salts on the Action of Testicular Extracts on the Viscosity of Vitreous Humour Preparations. Biochemic. J. 35, 456 (1941).Google Scholar
  163. 153.
    Marshall, J.: The Constituents of the Venom of the Rattlesnake. Science (Washington) 19, 715 (1904).Google Scholar
  164. 154.
    Martin, A. J. P. and R. R. Porter: The Chromatographic Fractionation of Ribonuclease. Biochemic. J. 49, 215 (1951).Google Scholar
  165. 155.
    Martirani, J. and M. P. Azevedo: Acçao proteolítica do veneno da Bothrops jararaca (Wied). Mem. Inst. Butantan 22, 47 (1950).Google Scholar
  166. 156.
    Micheel, F., H. Dietrich und G. Bischoff: III. Mitteilung über Schlangengifte. Über die Neurotoxine aus Giften von Cobra-Arten. Z. physiol. Chem. (Hoppe-Seyler) 249, 157 (1937).Google Scholar
  167. 157.
    Micheel, F. und F. Jung: Zur Kenntnis der Schlangengifte. II. Z. physiol. Chem. (Hoppe-Seyler) 239, 217 (1936).Google Scholar
  168. 158.
    Micheel, F., H. Schmitz, G. Bode und H. Emde: Zur Kenntnis der Schlangengifte 4. bis 12. Mitt. Ber. dtsch. chem. Ges. 71, 703, 1302, 1446, 2653 (1938);Google Scholar
  169. 158a.
    Micheel, F., H. Schmitz, G. Bode und H. Emde: Zur Kenntnis der Schlangengifte 4. bis 12. Mitt. Ber. dtsch. chem. Ges. 72, 68, 397, 1724 (1939);Google Scholar
  170. 158b.
    Micheel, F., H. Schmitz, G. Bode und H. Emde: Zur Kenntnis der Schlangengifte 4. bis 12. Xaturwiss. 26, 298 (1938);Google Scholar
  171. 158c.
    Micheel, F., H. Schmitz, G. Bode und H. Emde: Zur Kenntnis der Schlangengifte 4. bis 12 Z. physiol. Chem. (Hoppe-Seyler) 265, 266 (1940).Google Scholar
  172. 159.
    Michl, H.: Elektrophoretische und enzymatische Untersuchungen des Jararaca-Toxins. Naturwiss. 41, 403 (1954);Google Scholar
  173. 159a.
    Michl, H.: Über das Gift der Bothrops jararaca. Monatsir. Chem. 85, 1240 (1954).Google Scholar
  174. 160.
    Mosig, A.: Die Giftschlangen und ihre Bedeutung für die Pharmazie und Therapie im Lichte neuerer Erkenntnisse. Pharmazie 1951, 381 und 451.Google Scholar
  175. 161.
    Neumann, W. und E. Habermann: Zur papierelektrophoretischen Fraktio nierung tierischer Gifte. Naturwiss. 39, 286 (1952).Google Scholar
  176. 162.
    Neumann, W. und E. Habermann: Über die Phospholipase A des Bienengiftes. Z. physiol. Chem. (Hoppe-Seyler) 296, 166 (1954).Google Scholar
  177. 163.
    Neumann, W., E. Habermann und H. Hansen: Differenzierung von zwei hämolysierenden Faktoren im Bienengift. Arch. exp. Pathol. Pharmakol. 217, 130 (1953).Google Scholar
  178. 164.
    Noc, F.: Sur quelques propriétés physiologiques des différents venins de serpents. Ann. Inst. Pasteur 18, 387 (1904).Google Scholar
  179. 165.
    Nygaard, A. P.: Factors Involved in the Enzymic Reduction of Cytochrome C. J. Biol. Chem. 204, 655 (1953).Google Scholar
  180. 166.
    Nygaard, A. P. and J. B. Sumner: The Effect of Lecithinase A on the Succinoxidase System J. Biol. Chem. 200, 723 (1953).Google Scholar
  181. 167.
    Ogawa, K.: Über die fermentative Lysolecithinbildung. J. Biochemistry (Japan) 24, 389 (1936).Google Scholar
  182. 168.
    Park, J. T. and M. J. Johnson: A Submicrodetermination of Glucose. J. Biol. Chem. 181, 149 (1949).Google Scholar
  183. 169.
    Phisalix, M.: Animaux venimeux et venins, vols, 1 et 2. Paris: Masson et Cie. 1922.Google Scholar
  184. 170.
    Piantanida, M. and N. Muić: Paper-Strip Chromatography of the Proteinic Components of Ammodytes Viper Venom. Arch. Biochem. Biophys. 46, 110 (1953).Google Scholar
  185. 171.
    Piantanida, M. and N. Muić: Properties of the Toxin of Vípera ammodytes. Radovi Yugoslav. Akad. Ananosti i Umjetnosti 298, 207 (1953).Google Scholar
  186. 172.
    Polson, A., J. F. Jourbert, and D. A. Haig: Electrophoretic Examination of Cobra Venoms. Biochemic. J. 40, 265 (1946).Google Scholar
  187. 173.
    Rapport, M. M., K. Meyer, and A. Linker: Correlation of Reductimetric and Turbimetric Methods for Hyaluronidase Assay. Biol. Chem. 186, 615 (1950).Google Scholar
  188. 174.
    Ray, P.: Estimation of Zinc in Snake Venoms by Micro-quinaldinate Method. J. Indian Chem. Soc. 17, 681 (1940).Google Scholar
  189. 175.
    Reed, L. J. and H. Muench: A Simple Method of Estimating Fifty Per Cent End-points. Amer. J. Hyg. 27, 493 (1938).Google Scholar
  190. 176.
    Rochae Silva, M.: Beiträge zur Pharmakologie des Trypsins. Arch. exp. Pathol. Pharmakol. 194, 335 (1940).Google Scholar
  191. 177.
    Rochae Silva, M., W. T. Beraldo, and G. Rosenfeld: Bradykinin, a Hypotensive and Smooth Muscle Stimulating Factor Released from Plasma Globulin by Snake Venoms and by Trypsin. Amer. J. Physiol. 156, 261 (1949).Google Scholar
  192. 178.
    Roulet, F. und E. A. Zeller: Über die Enzyme des Mycobacterium tuberculosis und anderer säurefester Bakterien. 3. Mitt. Über den enzymatischen Abbau von L-Peptiden durch säurefeste Bakterien. Helv. Chim. Acta 31, 1915 (1948).Google Scholar
  193. 179.
    Roy, A. C. and R. N. Chopra: Some Biochemical Characteristics of Snake Venom. Indian J. med. Res. 26, 241 (1938).Google Scholar
  194. 180.
    Sabine, J. C.: A Continuous Titration for Cholinesterase Determinations. U. S. Atomic Energy Comm., Tech. Inform. Service, Oak Ridge, Tenn. AECU-2575 (1953).Google Scholar
  195. 181.
    Sarkar, N. K.: Effect of. Ultraviolet Rays on the Stability of Cobra Venom and Cardiotoxin. Ann. Biochem. exp. Med. 6, 87 (1946).Google Scholar
  196. 182.
    Sarkar,N. K.: Isolation of Cardiotoxin from Cobra Venom (Naja tripudians, Monocellate Variety). J. Indian Chem. Soc. 24, 227 (1947).Google Scholar
  197. 183.
    Sarkar, N. K.: Determination of Molecular Weight of Cardiotoxin by Diffusion Method. J. Indian Chem. Soc. 24, 61 (1947).Google Scholar
  198. 184.
    Sarkar, N. K.: Existence of a Cardiotoxin Principle in Cobra Venom. Ann. Biochem. exp. Med. 8, 11 (1947).Google Scholar
  199. 185.
    Sarkar, N. K. and S. R. Maitre: Action of Cobra Venom and Cardiotoxin on Gastrocnemius-sciatic Preparation of a Frog. Amer. J. Physiol. 163, 209 (1950).Google Scholar
  200. 186.
    Sarkar, N. K., S. R. Maitre, and B. N. Ghosh: The Effect of Neurotoxin, Hemolysin and Cholinesterase Isolated from Cobra Venom on Heart, Blood Pressure and Respiration. Indian J. med. Res. 30, 453 (1942).Google Scholar
  201. 187.
    Schaumann, O.: Pharmakologische Versuche mit Schlangengiften und Schlangensera. Behringwerk-Mitt. (Marburg a. d. Lahn) 7, 33 (1936).Google Scholar
  202. 188.
    Schlossberger, H.: Die Geschichte der Schlangengift Forschung. Behringwerk-Mitt. (Marburg a. d. Lahn) 7, 1 (1936).Google Scholar
  203. 189.
    Schüttler, W. A.: Toxicity of the Principal Snake Venoms of Brazil. J. Tropical Med. 31, 489 (1951).Google Scholar
  204. 190.
    Schüttler, W. A.: (unpublished).Google Scholar
  205. 191.
    Singer, T. P. and E. B. Kearney: The L-Amino Acid Oxidases of Snake Venom. I. Prosthetic Group of the L-Amino Acid Oxidase of Mocassin Venom. Arch. Biochemistry 27, 348 (1950).Google Scholar
  206. 192.
    Singer, T. P. and E. B. Kearney: The L-Amino Acid Oxidases of- Snake Venom. II. Isolation and Characterization of Homogeneous L-Amino Acid Oxidase. Arch. Biochemistry 29, 190 (1950).Google Scholar
  207. 193.
    Sinsheimer, R. L. and J. Koerner: A Purification of Venom Phosphodiesterase. J. Biol. Chem. 198, 293 (1952).Google Scholar
  208. 194.
    Slotta, K. H.: A crotoxina, primeira substância pura dos venenos ofídicos. An. Acad, brasil. Scienc. 10, 195 (1938).Google Scholar
  209. 195.
    Slotta, K. H.: Zur Chemie der Schlangengifte. Experientia 9, 81 (1953).Google Scholar
  210. 196.
    Slotta, K. and A. Ballester: Determinação colorimétrica da hialuronídase dos venenos ofídicos. Mem. Inst. Butantan 26, 311 (1954).Google Scholar
  211. 197.
    Slotta, K. and A. Ballester: (unpublished).Google Scholar
  212. 198.
    Slotta, K. and P. Borchert: Sobre o fator hemolítico dos venenos ofídicos. Mem. Inst. Butantan 26, 297 (1954).Google Scholar
  213. 199.
    Slotta, K. and A. Ballester: Histamina e toxinas protéicas no veneno de abelha. Mem. Inst. Butantan 26, 279 (1954).Google Scholar
  214. 200.
    Slotta, K. and A. Ballester: (unpublished).Google Scholar
  215. 201.
    Slotta, K. H. und W. Forster: Schlangengifte. IV. Mitt. Quantitative Bestimmung der schwefelhaltigen Bausteine. Ber. dtsch. chem. Ges. 71, 1082 (1938).Google Scholar
  216. 202.
    Slotta, K. and A. Ballester: Estudos químicos sôbreos venenos ofídicos. 5. Determinação quantitativa dos componentes que contêm enxofre. Mem. Inst. Butantan 12, 513 (1938).Google Scholar
  217. 203.
    Slotta, K. H., W. Forster und H. L. Fraenkel-Conrat: Schlangengifte. V. Mitt. Über die schwefelhaltigen Bausteine des Cobragiftes. Ber. dtsch. chem. Ges. 71, 1623 (1938).Google Scholar
  218. 204.
    Slotta, C. H. and H. L. Fraenkel-Conrat: Estudos químicos sôbre os venenos ofídicos. 2. Sôbre a forma de ligação do enxofre. Mem. Inst. Butantan 11, 121 (1937).Google Scholar
  219. 205.
    Slotta, C. H. and H. L. Fraenkel-Conrat: Schlangengifte. II. Mitt. Über die Bindungsart des Schwefels. Ber. dtsch. chem. Ges. 71, 264 (1938).Google Scholar
  220. 206.
    Slotta, C. H. and H. L. Fraenkel-Conrat: Two Active Proteins from Rattlesnake Venom. Nature (London) 142, 213 (1938).Google Scholar
  221. 207.
    Slotta, C. H. and H. L. Fraenkel-Conrat: Schlangengifte. III. Mitt. Reinigung und Kristallisation des Klapperschlangengiftes. Ber. dtsch. chem. Ges. 71, 1076 (1938).Google Scholar
  222. 208.
    Slotta, C. H. and H. L. Fraenkel-Conrat: Estudos químicos sôbre os venenos ofídicos. 4. Purificação e cristalisação do veneno da cobra cascavel. Mem. Inst. Butantan 12, 505 (1938).Google Scholar
  223. 209.
    Slotta, C. H. and H. L. Fraenkel-Conrat: Crotoxin. Nature (London) 144, 290 (1939).Google Scholar
  224. 210.
    Slotta, C. H. and H. L. Fraenkel-Conrat: (unpublished).Google Scholar
  225. 211.
    Slotta, K. and J. Primosigh: Estudos químicos sôbre os venenos ofídicos. 6. Composição da crotoxina. Mem. Inst. Butantan 23, 51. (1951). [English translation by E. R. Hope. Defense Scient. Inform. Serv. Canada (1953)].Google Scholar
  226. 212.
    Slotta, C. H. and H. L. Fraenkel-Conrat: Amino-Acid Composition of Crotoxin. Nature (London) 168, 696 (1951).Google Scholar
  227. 213.
    Slotta, C. H. and H. L. Fraenkel-Conrat: A New Method of Quantitative Paper Chromatography. Mem. Inst. Butantan 24 (2), 85 (1952).Google Scholar
  228. 214.
    Slotta, K. H. und G. Szyszka: Schlangengifte. I. Mitt. Bestimmung von Gift-, Koagulase- und Lecithinase-Wert und Beeinflussung der Gifte durch physikalische und chemische Mittel. Ber. dtsch. chem. Ges. 71, 258 (1938).Google Scholar
  229. 215.
    Slotta, C. H. and H. L. Fraenkel-Conrat: Estudos químicos sôbre os venenos ofídicos. 1. Determinação de sua toxicidade em camondongos. Mem. Inst. Butantan 11, 109 (1937).Google Scholar
  230. 216.
    Slotta, C. H., G. Szyszka, and H. L. Fraenkel-Conrat: Estudos químicos sôbre os venenos ofídicos. 3. Teor da coagulação e da lecithinase. Mem. Inst. Butantan 11, 133 (1937).Google Scholar
  231. 217.
    Soaje Echague, E.: Alteraciones circulatorias producidas por el veneno de Crotalus terrificus. Rev. soc. Argent. Biol. 16, 475 (1940).Google Scholar
  232. 218.
    Stedmann Ed. and Ell. Stedmann: The Purification of Cholinesterase. Biochemic. J. 29, 2563 (1935).Google Scholar
  233. 219.
    Taborda, A. R., L. C. Taborda, J. N. Williams, Jr., and C. A. Elvehjem: A Study of the Ribonuclease Activity of Snake Venoms. J. Biol. Chem. 194, 227 (1952).Google Scholar
  234. 219a.
    Taborda, A. R., L. C. Taborda, J. N. Williams, Jr., and C. A. Elvehjem: A Study of the Desoxyribonuclease Activity of Snake Venoms. J. Biol. Chem. 195, 207 (1952).Google Scholar
  235. 220.
    Taguet, C., E. Rouseau et R. Dumatras: Recherches relatives à l’action du venin de Cobra. C. R. Séances Soc. Biol. 113, 9 (1933).Google Scholar
  236. 221.
    Tristram, G. R.: The Proteins, vol. I, Part. A, p. 181, Ed. by H. Neurath and K. Bailey. New York: Academic Press. 1953.Google Scholar
  237. 222.
    Vellard, J.: Propriétés du venin des principales espèces de serpents du Venezuela. Ann. Inst. Pasteur 60, 511 (1938).Google Scholar
  238. 223.
    Vellard, J.: Enfermedades producidas por animales venenosas. Therapeutica clinica, 4. parte. Buenos Aires: E. Ateneu. 1946.Google Scholar
  239. 224.
    Vidal Breard, J. J. and V. E. Elias: Biochemistry of Snake Venoms. I. Lecithinase C Activity in Venom of Bothrops alternatus. Arch. farm, bioquim. Tucumán 5, 77 (1950).Google Scholar
  240. 225.
    Welker, W. H.: Fractionation of the Proteins of Rattlesnake Venom. J. Lab. clin. Med. 10, 298 (1925).Google Scholar
  241. 226.
    Wellers, G.: Action du cyanure de potassium sur le venin de cobra brut. Revue canad. biol. 8, 139 (1949).Google Scholar
  242. 227.
    Wieland, H. und W. Konz: Einige Beobachtungen am Gift der Brillenschlange (Naja tripudians). Sitz.-Ber. math.-nat. Abt. bayr. Akad. Wiss. 1936, 177.Google Scholar
  243. 228.
    Yang, C. C.: Effects of Crotoxin on the Succinic Oxidase System. J. Formosan Med. Assoc. 53, 59 (1954).Google Scholar
  244. 229.
    Yoshida, S.: Phosphodiesterase. J. Biochem. (Japan) 34, 23 (1941).Google Scholar
  245. 230.
    Zeller, E. A.: Über ein Adenosintriphosphorsäure (ATP) spaltendes Enzym der Schlangengifte. Experientia 4, 194 (1948).Google Scholar
  246. 231.
    Zeller, E. A.: Enzymes of Snake Venoms and their Biological Significance. Adv. Enzymology 8, 459 (1948).Google Scholar
  247. 232.
    Zeller, E. A.: Über die Cholinesterase der Schlangengifte. 5. Mitt, über die Biochemic tierischer Gifte. Helv. Chim. Acta 32, 94 (1949).Google Scholar
  248. 233.
    Zeller, E. A.: Über Phosphatasen. II. Über eine neue Adenosintriphosphatase. Helv. Chim. Acta 33, 821 (1950).Google Scholar
  249. 234.
    Zeller, E. A.: The Formation of Pyrophosphate from Adenosine Triphosphate in the Presence of a Snake Venom. Arch. Biochemistry 28, 138 (1950).Google Scholar
  250. 235.
    Zeller, E. A.: Enzymes as Essential Components of Toxins. In: “The Enzymes” by J. B. Sumner and K. Myrbäck. Vol. I, Part. 2, p. 986. New York: Academic Press. 1951.Google Scholar
  251. 236.
    Zeller, E. A., B. Iselin und A. Maritz: Über das Vorkommen der Ophio-l-aminosäure-oxydase. 4. Mitt, über eine neue l-Aminosäure-oxydase. Helv. Physiol. Acta 4, 233 (1946).Google Scholar
  252. 237.
    Zeller, E. A. und A. Maritz: Über eine neue l-Aminosäure-oxydase. 1. Mitt. Helv. Chim. Acta 27, 1888 (1944);Google Scholar
  253. 237a.
    Zeller, E. A. und A. Maritz: Über eine neue l-Aminosäure-oxydase. 2. Mitt. (Ophio-l-Aminosäure-oxydase). Helv. Chim. Acta 28, 365 (1945).Google Scholar
  254. 238.
    Zeller, E. A. und A. Maritz: Demonstration einet neuen Peptidase-Bestimmungsmethode (Fermentchemische Methoden. III.). Helv. Physiol. Acta 3, C 6 (1945).Google Scholar
  255. 239.
    Zeller, E. A., A. Maritz und B. Iselin: Über eine neue l-Aminosäure-oxydase (Ophio-l-aminosäure-oxydase). 3. Mitt. Helv. Chim. Acta 28, 1615 (1945).Google Scholar
  256. 240.
    Zeller, E. A. und D. C. Utz: Über die Spezifität der Cholinesterase der Schlangengifte. 6. Mitt. über die Biochemic tierischer Gifte. Helv. Chim. Acta 32, 338 (1949).Google Scholar

Copyright information

© Wien Springer Verlag 1955

Authors and Affiliations

  • Karl Slotta
    • 1
  1. 1.São PauloBrazil

Personalised recommendations