Advertisement

Abstract

In a review on terminal amino acids in peptides and proteins published in 1944 Fox (132) was able to give the position of only one amino acid, phenylalanine, in one protein, insulin, with some degree of certainty [Jensen and Evans (185)]. In the intervening period great advances in our knowledge of amino acid sequences in peptides and proteins have been made. It is now possible to write the complete structural formula for insulin and for many naturally occurring, short-chain polypeptides, two of which, oxytocin and vasopressin, have been synthesised. Much progress has also been made in elucidating the structure of proteins larger than insulin.

Keywords

Paper Chromatography Partial Hydrolysate Cysteic Acid Partition Chromatography Paper Chromatogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acher, R. et J. Chauvet: La structure de la Vasopressine de Boeuf. Biochim. Biophys. Acta 14, 421 (1954).CrossRefGoogle Scholar
  2. 2.
    Acher, R., J. Chauvet, C. Crocker, U.R. Laurila, J. Thaureaux et C. Fromageot: Isolement et caractérisation des peptides courts obtenus par hydrolyse acide. Étude de la structure du lysozyme et de la Vasopressine. Bull. soc. chim. biol. (Paris) 36, 167 (1954).Google Scholar
  3. 3.
    Acher, R. et C. Crocker: Réactions colorées spécifiques de l’arginine et de la tyrosine realisées après Chromatographie sur papier. Biochim. Biophys. Acta 9, 704 (1952).CrossRefGoogle Scholar
  4. 4.
    Acher, R., C. Fromageot et M. Jutisz: Séparations chromatographiques d’acides aminés et de peptides. V. Les acides aminés individuels de l’insuline avec une note sur le dosage de la proline. Biochim. Biophys. Acta 5, 81 (1950).Google Scholar
  5. 5.
    Acher, R., M. Jutisz et C. Fromageot: Sur la structure du lysozyme. Étude de peptides basiques résultant d’une hydrolyse acide ménagée. Biochim. Biophys. Acta 8, 442 (1952).CrossRefGoogle Scholar
  6. 6.
    Acher, R. et U. R. Laurila: Sur la résistance de certains dinitrophénylaminoacides à l’hydrolyse chlorhydrique. Bull. soc. chim. biol. (Paris) 35, 413 (1953).Google Scholar
  7. 7.
    Acher, R., U. R. Laurila, J. Thaureaux et C. Fromageot: Étude des peptides de la phenylalanine résultant de l’hydrolyse acide et enzymatique du lysozyme. Biochim. Biophys. Acta 14, 151 (1954).CrossRefGoogle Scholar
  8. 8.
    Acher, R., J. Thaureaux, C. Crocker, M. Jutisz et C. Fromageot: Sur la structure du lysozyme. Quelques peptides de l’histidine et de la tyrosine résultant d’une hydrolyse ménagée. Biochim. Biophys. Acta 9, 339 (1952).CrossRefGoogle Scholar
  9. 9.
    Akabori, S., K. Ohno, T. Ikenaka, A. Nagata, and I. Haruna: An Improved Method for the Characterisation and Quantitative Estimation of Carboxylterminal Amino Acids in Proteins. Proc. Japan. Acad. 29, 561 (1953).Google Scholar
  10. 10.
    Akabori, S., K. Ohno, and K. Narita: On the Hydrazinolysis of Proteins and Peptides: A Method for the Characterisation of Carboxyl-terminal Amino Acids in Proteins. Bull. Chem. Soc. Japan 25, 214 (1952).CrossRefGoogle Scholar
  11. 11.
    Akabori, S., N. Sakota, H. Ono, Y. Okada, and H. Hanabusa: The Structure of α-Chymotrypsinogen and α-Chymotrypsin. Symposia Enzyme Chem. (Japan) 9, 25 (1954) [Chem. Abstr. 48, 7082 (1954)].Google Scholar
  12. 12.
    Åkerfeldt, S.: A Spot Area Method for Quantitative Determination of Amino Acids on Two-Dimensional Paper Chromatograms. Acta Chem. Scand. 8, 521 (1954).CrossRefGoogle Scholar
  13. 13.
    Alexander, P., R.F. Hudson, and M. Fox: The Reaction of Oxidising Agents with Wool. 1. The Division of Cystine into Two Fractions of Widely Differing Reactivities. Biochemic. J. 46, 27 (1950).Google Scholar
  14. 14.
    Ames, B.N. and H.K. Mitchell: Paper Chromatography of Imidazoles. J. Amer. Chem. Soc. 74, 252 (1952).CrossRefGoogle Scholar
  15. 15.
    Anfinsen, C. B., R.R. Redfield, W. L. Choate, J. Page, and W. R. Carrol: Studies on the Gross Structure, Cross Linkages and Terminal Sequences in Ribonuclease. J. Biol. Chem. 207, 201 (1954).Google Scholar
  16. 16.
    Anson, M. L.: The Denaturation of Proteins. 9e conseil de chimie, Institut Internat. Chim. Solvay. «Les protéines», p. 201 (1953).Google Scholar
  17. 17.
    Aronoff, S.: Separation of the Ionic Species of Lysine by Means of Partition Chromatography. Science (Washington) 110, 590 (1949).CrossRefGoogle Scholar
  18. 18.
    Atkinson, R. O., R. G. Stuart, and R. E. Stuckey: Colours Developed in the Paper Chromatography of Amino Acids. Analyst 75, 447 (1950).Google Scholar
  19. 19.
    Auclair, J. L. and R. Dubreuil: Simple Ultramicromethod for the Quantitative Estimation of Amino Acids by Paper Partition Chromatography. Canad. J. Zool. 30, 109 (1952).CrossRefGoogle Scholar
  20. 20.
    Auclair, J. L. and R. L. Patton: On the Occurrence of D-Alanine in the Haemolymph of the Milkweed Bug, Oncopeltus fasciatus. Revue Canad. Biol. 9, 3 (1950).Google Scholar
  21. 21.
    Awapara, J.: Application of Paper Chromatography to the Estimation of Some Free Amino Acids in Tissues of the Rat. J. Biol. Chem, 178, 113 (1949).Google Scholar
  22. 22.
    Bailey, K.: End-Group Assay in some Proteins of the Keratin-Myosin Group. Biochemic. J. 49, 23 (1951).Google Scholar
  23. 23.
    Bailey, K., F. R. Bettelheim, L. Lorand, and W. R. Middlebrook: Action of Thrombin in the Clotting of Fibrinogen. Nature (London) 167, 233 (1951).CrossRefGoogle Scholar
  24. 24.
    Bailey, K., A. C. Chibnall, M. W. Rees, and E. F. Williams: Critique of the Foreman Method for the Estimation of the Dicarboxylic Acids in Protein Hydrolysates. Appendix 2. On the Possible Presence of Hydroxyglutamic Acid in Protein Hydrolysates. Biochemic. J. 37, 360 (1943).Google Scholar
  25. 25.
    Balston, J. N. and B. E. Talbot: A Guide to Filter Paper and Cellulose Powder Chromatography (Ed., T. S. G. Jones). London: Reeve Angel and Balston. 1952.Google Scholar
  26. 26.
    Baptist, V. H. and H. B. Bull: Determination of the Terminal Carboxyl Residues of Peptides and Proteins. J. Amer. Chem. Soc. 75, 1727 (1953).CrossRefGoogle Scholar
  27. 27.
    Bate-Smith, E. C. and R. G. Westall: Chromatographic Behaviour and Chemical Structure. 1. Some Naturally Occurring Phenolic Substances. Biochim. Biophys. Acta 4, 427 (1950).CrossRefGoogle Scholar
  28. 28.
    Bender, A. E.: Methyl Cellosolve as a Developing Solvent in Paper Partition Chromatography. Biochemic. J. 48, xv (1951).Google Scholar
  29. 29.
    Bentley, H. R. and J. K. Whitehead: Water-miscible Solvents in the Separation of Amino-acids by Paper Chromatography. Biochemic. J. 46, 341 (1950).Google Scholar
  30. 30.
    Berry, H. K. and L. Cain: Biochemical Individuality. IV. A Paper Chromatographic Technique for Determining Excretion of Amino Acids in the Presence of Interfering Substances. Arch. Biochemistry 24, 179 (1949).Google Scholar
  31. 31.
    Berry, H. K., H.E. Sutton, L. Cain, and J. S. Berry: Development of Paper Chromatography for Use in the Study of Metabolic Patterns. Univ. Texas Public. No. 5109, 22 (1951).Google Scholar
  32. 32.
    Bettelheim, F. R.: Tyrosine-O-Sulphate in a Peptide from Fibrinogen. J. Amer. Chem. Soc. 76, 2838 (1954).CrossRefGoogle Scholar
  33. 33.
    Bettelheim, F. R. and K. Bailey: The Products of the Action of Thrombin on Fibrinogen. Biochim. Biophys. Acta 9, 578 (1952).CrossRefGoogle Scholar
  34. 34.
    Biserte, G. et Dautrevaux: Enchaînements “NH2-terminaux” et “COOH-terminaux” de quelques protéines: 1. Cristalbumine de Cheval et pepsine. Bull. soc. chim. biol. (Paris) 36, 204 (1954).Google Scholar
  35. 35.
    Biserte, G. et R. Osteux: La Chromatographie de partage sur papier des dinitrophénylaminoacides. Bull. soc. chim. biol. (Paris) 33, 50 (1951).Google Scholar
  36. 36.
    Blackburn, S. and G. R. Lee: The Terminal Carboxyl Groups of Wool Keratin. J. Textile Inst. 45, T 487 (1954).Google Scholar
  37. 37.
    Blackburn, S. and A. G. Lowther: The Separation of N-2:4-Dinitrophenyl Amino-Acids on Paper Chromatograms. Biochemic. J. 48, 126 (1951).Google Scholar
  38. 38.
    Blackburn, S. and A. Robson: A Radiochemical Method for the Microestimation of α-Amino Acids Separated on Paper Partition Chromatograms. Biochemic. J. 54, 295 (1953).Google Scholar
  39. 39.
    Blass, J., O. Lecomte et J. Polonovski: Sur une technique d’électrophorèse associée à la Chromatographie sur papier. “Chromatoionophorèse” appliquée aux aminoacides et bases aminées. Bull. soc. chim. biol. (Paris) 36, 627 (1954).Google Scholar
  40. 40.
    Block, R. J.: Quantitative Paper Chromatography: A Simplified Procedure. Proc. Soc. exp. Biol. Med. 72, 337 (1949).Google Scholar
  41. 41.
    Block, R. J.: Estimation of Amino Acids and Amines on Paper Chromatograms. Analyt. Chemistry 22, 1327 (1950).CrossRefGoogle Scholar
  42. 42.
    Block, R.J. and H. B. van Dyke: Amino Acids in Posterior Pituitary Protein. Arch. Biochem. Biophys. 36, 1 (1952).CrossRefGoogle Scholar
  43. 43.
    Block, R. J., R. Le Strange, and G. Zweig: Paper Chromatography. A Laboratory Manual. New York: Academic Press. 1952.Google Scholar
  44. 44.
    Bode, F., H. J. Hübener, H. Brückner und K. Hoeres: Eine einfache quantitative Bestimmung von Aminosäuren im Papierchromatogramm. Naturwiss. 39, 524 (1952).CrossRefGoogle Scholar
  45. 45.
    Boissonnas, R. A.: Séparation rapide des acides aminés par Chromatographie ascendante bidimensionnelle sur papier: Helv. Chim. Acta 33, 1966 (1950).CrossRefGoogle Scholar
  46. 46.
    Boissonnas, R. A.: Révélation ponctuelle des acides aminés, des polypeptides et des sucres séparés par Chromatographie sur papier. Helv. Chim. Acta 33, 1972.(1950).CrossRefGoogle Scholar
  47. 47.
    Boissonnas, R. A.: Dosage colorimétrique des acides aminés séparés par Chromatographie sui papier. Helv. Chim. Acta 33, 1975 (1950).CrossRefGoogle Scholar
  48. 48.
    Boissonnas, R. A.: Dégradation des peptides neutres à partir de leur extrémité carboxylique. Helv. Chim. Acta 35, 2226 (1952).CrossRefGoogle Scholar
  49. 49.
    Bonetti, E. and C. E. Dent: The Determination of the Optical Configuration. of Naturally Occurring Amino Acids using Specific Enzymes and Paper Chromatography. Biochemic. J. 57, 77 (1954).Google Scholar
  50. 50.
    Boulanger, P. et G. Biserte: Chromatographie sur papier des acides aminés et polypeptides des liquides biologiques. II. Modifications techniques et résultats nouveaux (plasma sanguin). Bull. soc. chim. biol. (Paris) 33, 1930 (1951).Google Scholar
  51. 51.
    Boulanger, P. et G. Biserte: Peptides et protéines. Bull. soc. chim. France 1952, 830.Google Scholar
  52. 52.
    Breyhan, T.: Über Spaltungsreaktionen von Glutaminsäure und Ornithin unter den Bedingungen der sauren Peptidhydrolyse. Naturwiss. 40, 271 (1953).CrossRefGoogle Scholar
  53. 53.
    Brush, M. K., R. K. Boutwell, A. D. Barton, and C. Heidelberger: Destruction of Amino Acids during Filter Paper Chromatography. Science (Washington) 113, 4 (1951).CrossRefGoogle Scholar
  54. 54.
    Bryant, F.: Pyridine—Amyl Alcohol as a Paper Chromatographic Solvent for Amino Acids. Austral. J. Sci. 13, 83 (1950).Google Scholar
  55. 55.
    Bryant, F. and B. T. Overell: A New Paper Chromatographic Solvent for Amino Acids. Nature (London) 168, 167 (1951).CrossRefGoogle Scholar
  56. 56.
    Bull, H. B., J. W. Hahn, and V. H. Baptist: Filter Paper Chromatography. J. Amer. Chem. Soc. 71, 550 (1949).CrossRefGoogle Scholar
  57. 57.
    Bumpus, F. M. and I.H. Page: Preliminary Studies on the Structure of Angiotonin. Science (Washington) 119, 849 (1954).CrossRefGoogle Scholar
  58. 58.
    Burma, D. P.: On the Role of Water Contained in the Solvent Used in Filter Paper Chromatography. II. J. Indian Chem. Soc. 28, 555 (1951).Google Scholar
  59. 59.
    Burma, D. P.: Effect of Temperature on the R f Values of Amino Acids during Paper Chromatography with Solvents Completely Miscible with Water. Nature (London) 168, 565 (1951).CrossRefGoogle Scholar
  60. 60.
    Burma, D. P.: Partition Mechanism of Paper Chromatography. Adsorption of Chromatographed Substances. Analyt. Chemistry 25, 549 (1953).CrossRefGoogle Scholar
  61. 61.
    Butler, J. A. V., E. C. Dodds, D. M. P. Phillips, and J.M.L. Stephen: The Action of Chymotrypsin and Trypsin on Insulin. Biochemic. J. 42, 116 (1948).Google Scholar
  62. 62.
    Campbell, P. N., T. S. Work, and E. Mellanby: The Isolation of a Toxic Substance from Agenized Wheat Flour. Biochemic. J. 48, 106 (1951).Google Scholar
  63. 63.
    Chibnall, A. C.: Chemical Constitution of the Proteins. 9e conseil de chimie. Institut Internat. Chim. Solvay. “Les protéines”, p. 119 (1953).Google Scholar
  64. 64.
    Chibnall, A. C. and M. W. Rees: The Amide and Free Carboxyl Groups of Insulin. Biochemic. J. 48, xlvii (1951).Google Scholar
  65. 65.
    Chibnall, A. C. and M. W. Rees: Further Observations on the Amide and Free Carboxyl Groups of Insulin. Biochemic. J. 52, 111 (1952).Google Scholar
  66. 66.
    Chibnall, A. C. and M. W. Rees: Identification and Estimation of the Amide and C-Terminal Residues in Insulin by Reduction of the Ester with Lithium Borohydride. Ciba Found. Symp. “The Chemical Structure of Proteins”, p. 70 (1953).Google Scholar
  67. 67.
    Christensen, H. X.: The Isolation of Valylvaline from Gramicidin Hydrolysates. J. Biol. Chem. 151, 319 (1943).Google Scholar
  68. 68.
    Christensen, H. X.: Attempted Successive Applications of the Edman Degradation to Insulin. C. R. Trav. Lab. Carlsberg, Sér. chim. 28, 265 (1952).Google Scholar
  69. 69.
    Chromatographic Analysis. Discuss. Faraday Soc. 7 (1949).Google Scholar
  70. 70.
    Ciba Symposium, “The Chemical Structure of Proteins”. London: Churchill. 1953.Google Scholar
  71. 71.
    Clayton, R. A. and F. M. Strong: New Solvent System for Separation of Amino Acids by Paper Chromatography. Analyt. Chemistry 26, 1362 (1954).CrossRefGoogle Scholar
  72. 72.
    Cocking, E. C. and E. W. Yemm: Estimation of Amino Acids by Ninhydrin. Biochemic. J. 58, xii (1954).Google Scholar
  73. 73.
    Colloque national sur la structure chimique des protéines. Bull. soc. chim. biol. (Paris) 36, 11 (1954).Google Scholar
  74. 74.
    Consden, R.: Partition Chromatography on Paper, Its Scope and Application, Nature (London) 162, 359 (1948).CrossRefGoogle Scholar
  75. 75.
    Consden, R. and A. H. Gordon: Effect of Salt on Partition Chromatograms. Nature (London) 162, 181 (1948).CrossRefGoogle Scholar
  76. 76.
    Consden, R. and A. H. Gordon: A Study of the Peptides of Cystine in Partial Hydrolysates of Wool. Biochemic. J. 46, 8 (1950).Google Scholar
  77. 77.
    Consden, R., A.H. Gordon, and A. J. P. Martin: Qualitative Analysis of Proteins: a Partition Chromatographic Method using Paper. Biochemic. J. 38, 224 (1944).Google Scholar
  78. 78.
    Consden, R., A.H. Gordon, and A. J. P. Martin: Ionophoresis in Silica Jelly. A Method for the Separation of Amino Acids and Peptides. Biochemic. J. 40, 33 (1946).Google Scholar
  79. 79.
    Consden, R., A.H. Gordon, and A. J. P. Martin: The Identification of Lower Peptides in Complex Mixtures. Biochemic. J. 41, 590 (1947).Google Scholar
  80. 80.
    Consden, R., A.H. Gordon, and A. J. P. Martin: Separation of Acidic Amino-acids by Means of a Synthetic Anion Exchange Resin. Biochemic. J. 42, 443 (1948).Google Scholar
  81. 81.
    Consden, R., A.H. Gordon, and A. J. P. Martin: A Study of the Acidic Peptides Formed on the Partial Acid Hydrolysis of Wool. Biochemic J. 44, 548 (1949).Google Scholar
  82. 82.
    Consden, R., A. H. Gordon, A. J. P. Martin, O. Rosenheim, and R. L. M. Synge: The Non-Identity of Thudichum’s “Glycoleucine” and nor-Leucine. Biochemic. J. 39, 251 (1945).Google Scholar
  83. 83.
    Consden, R., A. H. Gordon, A. J. P. Martin, and R. L.M. Synge: Gramicidin S: The Sequence of Amino-acid Residues. Biochemic. J. 41, 596 (1947).Google Scholar
  84. 84.
    Cook, A. H. and A. L. Levy: Studies in the Azole Series. XXVII. A New Method of Peptide Synthesis: Glycyl Peptides. J. Chem. Soc. (London) 1950, 646.Google Scholar
  85. 85.
    Cook, A. H. and A. L. Levy: Studies in the Azole Series. XXVIII. A New Method of Peptide Synthesis: Alanyl-peptides. J. Chem. Soc. (London) 1950, 651.Google Scholar
  86. 86.
    Cooley, S. L., and J. L. Wood: Desulfurization of Proteins by Raney Nickel. Arch. Biochem. Biophys. 34, 372 (1951).CrossRefGoogle Scholar
  87. 87.
    Craig, L. C.: Partition Chromatography and Countercurrent Distribution. Analyt. Chemistry 22, 1346 (1950).CrossRefGoogle Scholar
  88. 88.
    Craig, L. C., W. Hausmann, and J. R. Weisiger: Structural Studies with Bacitracin A. J. Amer. Chem. Soc. 76, 2839 (1954).CrossRefGoogle Scholar
  89. 89.
    Cramer, F.: Paper Chromatography. 2nd ed. London: McMillan, 1954.Google Scholar
  90. 90.
    Crumpler, H. R. and C. E. Dent: Distinctive Test for α-Amino Acids in Paper Chromatography. Nature (London) 164, 441 (1949).CrossRefGoogle Scholar
  91. 91.
    Curzon, G. and J. Giltrow: A Chromatographic Colour Reagent for a Group of Amino Acids. Nature (London) 172, 356 (1953).CrossRefGoogle Scholar
  92. 92.
    Dahlerup-Petersen, B.: Rate of Ringclosure in the Edman Method. Acta Chem. Scand. 7, 1013 (1953).CrossRefGoogle Scholar
  93. 93.
    Dahlerup- Petersen, B., K. Linderström-Lang, and M. Ottesen: Stepwise Degradation of Peptides. Acta Chem. Scand. 6, 1135 (1952).CrossRefGoogle Scholar
  94. 94.
    Danielsson, C. E.: A New Type of Preparative Chromatographic Paper Column. Ark. Kemi 5, 173 (1952).Google Scholar
  95. 95.
    Datta, S. P., C.E. Dent, and H. Harris: Apparatus for Mass-Production Two-Way Paper Chromatography. Biochemic. J. 46, xlii (1950).Google Scholar
  96. 96.
    Davie, E. W. and H. Neurath: C-Terminal Groups of Trypsinogen, DFP-Trypsin and Carboxypeptidase. J. Amer. Chem. Soc. 74, 6305 (1952).CrossRefGoogle Scholar
  97. 97.
    Davie, E. W. and H. Neurath: Identification of the Peptide Split from Trypsinogen during Autocatalytic Activation. Biochim. Biophys. Acta 11, 442 (1953).CrossRefGoogle Scholar
  98. 98.
    Davoll, H., R. A. Turner, J. G. Pierce, and V. du Vigneaud: An Investigation of the Free Amino Groups in Oxytocin and Desulfurized Oxytocin Preparations. J. Biol. Chem. 193, 363 (1951).Google Scholar
  99. 99.
    De Fontaine, D. and S.W. Fox: Application of a Quantitative Method of Peptide Analysis to the N-Terminal Sequence of Lysozyme. J. Amer. Chem. Soc. 76, 3701 (1954).CrossRefGoogle Scholar
  100. 100.
    Dent, C.E.: The Aminoaciduria in Fanconi Syndrome. A Study Making Extensive Use of Techniques Based on Paper Partition Chromatography. Biochemic J. 41, 240 (1947).Google Scholar
  101. 101.
    Dent, C.E.: A Study of the Behaviour of Some Sixty Amino Acids and other Ninhydrin Reacting Substances on Phenol-“Collidine” Filter-paper Chromatograms, with Notes on the Occurrence of Some of them in Biological Fluids. Biochemic. J. 43, 169 (1948).Google Scholar
  102. 102.
    Dent, C. E. and D. I. Fowler: Paper-chromatographic Analysis of Dakin’s Samples of “ß-Hydroxyglutamic Acid”. Biochemic. J. 56, 54 (1954).Google Scholar
  103. 103.
    Desnuelle, P.: Quelques techniques nouvelles pour l’étude de la structure des protéines. Adv. Enzymology 14, 261 (1953).Google Scholar
  104. 104.
    Desnuelle, P.: The General Chemistry of Amino Acids and Peptides. The Proteins. Vol. 1 A, p. 87 (Ed., H. Neurath and K. Bailey). New York: Academic Press. 1953.Google Scholar
  105. 105.
    Desnuelle, P. et G. Bonjour: Nouvelles recherches sur l’hydrolyse préférentielle des liaisons serine et threonine dans les protéines. Biochim. Biophys. Acta 7, 451 (1951).CrossRefGoogle Scholar
  106. 106.
    Desnuelle, P.: Quelques modèles simples pour l’étude de l’hydrolyse protéique en milieu faiblement acid. Biochim. Biophys. Acta 9, 356 (1952).CrossRefGoogle Scholar
  107. 107.
    Desnuelle, P. et C. Fabre: Étude des séquences N-terminales de la trypsine et du trypsinogène. Bull. soc. chim. biol. (Paris) 36, 181 (1954).Google Scholar
  108. 108.
    Desnuelle, P., M. Rovery et G. Bonjour: Quelques nouvelles observations sur le mode d’attaque de la globine de Cheval et de l’albumine d’oeuf par la pepsine. Biochim. Biophys. Acta 5, 116 (1950).CrossRefGoogle Scholar
  109. 109.
    Desnuelle, P., M. Rovery et C. Fabre: Étude des restes N-terminaux dans les sérumalbumines de diverses espèces (suivie d’une remarque sur la stabilité des dinitrophénylaminoacides pendant l’hydrolyse). C. R. hebd. Séances Acad. Sci. 233, 987 (1951).Google Scholar
  110. 110.
    Desnuelle, P., M. Rovery et C. Fabre: Extrémités N-terminales de la protéine de l’α-chymotrypsine. Biochim. Biophys. Acta 9, 109 (1952).CrossRefGoogle Scholar
  111. 111.
    Dickman, S. R. and R. O. Asplund: Effect of Xanthylation on the Recovery of DNP-Amino Acids from Acid Protein Hydrolysates. J. Amer. Chem. Soc. 74, 5208 (1952).CrossRefGoogle Scholar
  112. 112.
    Draper, O. J. and A. L. Pollard: The Purification of Phenol for Paper Partition Chromatography. Science (Washington) 109, 448 (1949).CrossRefGoogle Scholar
  113. 113.
    Durrum, E. L.: Two-dimensional Electrophoresis and Ionophoresis. J. Coll. Sci. 6, 274 (1951).CrossRefGoogle Scholar
  114. 114.
    du Vigneaud, V., C. Ressler, J. M. Swan, C. W. Roberts, and P. G. Katsoyannis: The Synthesis of Oxytocin. J. Amer. Chem. Soc. 76, 3115 (1954).CrossRefGoogle Scholar
  115. 115.
    Du Vigneaud, V., C. Ressler, and S. Trippett: The Sequence of Amino Acids in Oxytocin, with a Proposal for the Structure of Oxytocin. J. Biol. Chem. 205, 949 (1953).Google Scholar
  116. 116.
    Edman, P.: On the Purification and Chemical Composition of Hypertensin (Angiotonin). Ark. Kemi, Mineral. Geol. 22 A, No. 3 (1946).Google Scholar
  117. 117.
    Edman, P.: Method of Determination of the Amino Acid Sequence in Peptides. Acta Chem. Scand. 4, 283 (1950).CrossRefGoogle Scholar
  118. 118.
    Edman, P.: Note on the Stepwise Degradation of Peptides via Phenyl Thiohydantoins. Acta Chem. Scand. 7, 700 (1953).CrossRefGoogle Scholar
  119. 119.
    Edman, P.: Selective Cleavage of Peptides. Ciba Found. Symp. “The Chemical Structure of Proteins”, p. 98 (1953).Google Scholar
  120. 120.
    Eisen, H. N., S. Belman, and M. E. Carsten: The Reaction of 2,4-Dinitrobenzenesulfonic Acid with Free Amino Groups of Proteins. J. Amer. Chem. Soc. 75, 4583 (1953).CrossRefGoogle Scholar
  121. 121.
    Elliott, D. F.: A Search for Specific Chemical Methods for Fission of Peptide Bonds. I. The N-Acyl to O-Acyl Transformation in the Degradation of Silk Fibroin. Biochemic. J. 50, 542 (1952).Google Scholar
  122. 122.
    Elliott, D. F.: Acyl Migration in the Study of Protein Structure. Ciba Found. Symp. “The Chemical Structure of Proteins”, p. 129 (1953).Google Scholar
  123. 123.
    Elmore, D. T. and P. A. Toseland : A New Method of Stepwise Degradation of Peptides. Chem. and Ind. 1953, 1227.Google Scholar
  124. 124.
    England, A. and E. J. Cohn: Studies in the Physical Chemistry of Amino Acids, Peptides and Related Substances. IV. The Distribution Coefficients of Amino Acids between Water and Butyl Alcohol. J. Amer. Chem. Soc. 57, 634 (1935).CrossRefGoogle Scholar
  125. 125.
    Felix, K. und A. Krekels: Trennung von Dinitrophenylamino-säuren in der Papierchromatographie. Z. physiol. Chem. (Hoppe-Seyler) 290, 78 (1925).Google Scholar
  126. 126.
    Fischer, F. G. und H. Dörfel: Zur quantitativen Auswertung der Papierchromatogramme von Eiweiß-Hydrolysaten. Biochem. Z. 324, 544 (1953).Google Scholar
  127. 127.
    Fisher, R. B., D. S. Parsons, and G. A. Morrison: Quantitative Paper Chromatography. Nature (London) 161, 764 (1948).CrossRefGoogle Scholar
  128. 128.
    Flavin, M.: The Linkage of Phosphate to Protein in Pepsin and Ovalbumin. J. Biol. Chem. 210, 771 (1954).Google Scholar
  129. 129.
    Fowden, L.: The Quantitative Recovery and Colorimetric Estimation of Amino-acids Separated by Paper Chromatography. Biochemic. J.. 48, 327 (1951).Google Scholar
  130. 130.
    Fowden, L.: The Effect of Age on the Bulk Protein Composition of Chlorella vulgaris. Biochemic. J. 52, 310 (1952).Google Scholar
  131. 131.
    Fowden, L. and J. R. Penney: Elimination of Losses in the Quantitative Estimation of Amino Acids by Paper Chromatography. Nature (London) 165, 846 (1950).CrossRefGoogle Scholar
  132. 132.
    Fox, S. W.: Terminal Amino Acids in Peptides and Proteins. Adv. Protein Chem. 2, 155 (1945).CrossRefGoogle Scholar
  133. 133.
    Fox, S. W., T. L. Hurst, and K. F. Itschner: A Microbiological Method for the Determination of Sequences of Amino Acid Residues. J. Amer. Chem. Soc. 73, 3573 (1951).CrossRefGoogle Scholar
  134. 134.
    Fox, S. W., T. L. Hurst, and C. Warner: Sequential and Amino Acid-Residue Compositions of Adrenocorticotropic Hormone Preparations of Various Levels of Activity. J. Amer. Chem. Soc. 76, 1154 (1954).CrossRefGoogle Scholar
  135. 135.
    Fraenkel-Conrat, H.: The Essential Groups of Lysozyme, with Particular Reference to its Reaction with Iodine. Arch. Biochemistry 27, 109 (1950).Google Scholar
  136. 136.
    Fraenkel-Conrat, H.: Phenylisothiocyanate as a Reagent for the Identification of the Terminal Amino-Acids. Ciba Found. Symp. “The Chemical Structure of Proteins”, p. 102 (1953).Google Scholar
  137. 137.
    Fraenkel-Conrat, H.: A Technique for Stepwise Degradation of Proteins from the Amino End. J. Amer. Chem. Soc. 76, 3606 (1954).CrossRefGoogle Scholar
  138. 138.
    Fraenkel-Conrat, H. and J. Fraenkel-Conrat: A Method for Determination of the Amino Acid Sequence of Proteins. Acta Chem. Scand. 5, 1409 (1951).CrossRefGoogle Scholar
  139. 139.
    Fraenkel-Conrat, H. and J. I. Harris: private communication.Google Scholar
  140. 140.
    Fraenkel-Conrat, H. and R. R. Porter: The Terminal Amino Groups of Conalbumin, Ovomucoid, and Avidin. Biochim. Biophys. Acta 9, 557 (1952).CrossRefGoogle Scholar
  141. 141.
    Fraenkel-Conrat, H. and B. Singer: The Peptide Chains of Tobacco Mosaic Virus. J. Amer. Chem. Soc. 76, 180 (1954).CrossRefGoogle Scholar
  142. 142.
    Fromageot, C. and M. Jutisz: Identification of C-End Groups in Proteins by Reduction with Lithium Aluminium Hydride. Ciba Found. Symp. “The Chemical Structure of Proteins”, p. 82 (1953).Google Scholar
  143. 143.
    Fromageot, C., M. Jutisz, D. Meyer et L. Pénasse: Méthode pour la caractérisation des groupes carboxyliques terminaux des les protéines. Application à l’insuline. Biochim. Biophys. Acta 6, 283 (1950).CrossRefGoogle Scholar
  144. 144.
    Fromageot, C. et M. Privat de Garilhe: La composition du lysozyme en acides aminés. II. Acides aminés totaux. Biochim. Biophys. Acta 4, 509 (1950).CrossRefGoogle Scholar
  145. 145.
    Gale, E. F. and M. B. van Halteren: The Assimilation of Amino Acids by Bacteria. 13. The Effect of Certain Amino Acids on the Accumulation of Free Glutamic Acid by Staphylococcus aureus: Extracellular Peptide Formation. Biochemic. J. 50, 34 (1951).Google Scholar
  146. 146.
    Giri, K. V. and A. Nagabhushanam: Sodium 1,2-Naphthoquinone-4-sulfonate as a Reagent for Identification of Amino Acids and Peptides and for Quantitative Estimation of Proline and Hydroxyproline Separated on Paper Chromatograms. Naturwiss. 39, 548 (1952).CrossRefGoogle Scholar
  147. 147.
    Giri, K. V., A. N. Radhakrishnan, and C. S. Vaidyanathan: Circular Paper Chromatography. VI. The Quantitative Determination of Amino Acids. J. Indian Inst. Sci. 35, 145 (1953).Google Scholar
  148. 148.
    Giri, K. V. and N. A. N. Rao: A Technique for the Identification of Amino Acids Separated by Circular Paper Chromatography. Nature (London) 169, 923 (1952).CrossRefGoogle Scholar
  149. 149.
    Giri, K. V. and N. A. N. Rao: Separation and Estimation of Overlapping Amino Acids by Circular Paper Chromatography using Different Solvent Mixtures. Current Sci. (India) 22, 114 (1953).Google Scholar
  150. 150.
    Gladner, J. A. and H. Neurath: Carboxyl Terminal Groups of Proteolytic Enzymes. I. The Activation of Chymotrypsinogen to α-Chymotrypsin. J. Biol. Chem. 205, 345 (1953).Google Scholar
  151. 151.
    Gladner, J. A. and H. Neurath: Carboxyl Terminal Groups of Proteolytic Enzymes. II. Chymotrypsins. J. Biol. Chem. 206, 911 (1954).Google Scholar
  152. 152.
    Gordon, A. H., A. J. P. Martin, and R. L. M. Synge: Partition Chromatography of Free Amino Acids and Peptides. Biochemic J. 37, xiii (1943).Google Scholar
  153. 153.
    Grassmann, W.: Electron Optical, and Chemical Studies on the Structure of Collagen. Ciba Found. Symp. “The Chemical Structure of Proteins”, p. 195 (1953).Google Scholar
  154. 154.
    Grassmann, W., H. Hörmann und H. Endres: Eine Verbesserung der Bestimmung von Aminosäuren am Carboxylende von Peptiden durch Reduktion der Carboxylgruppe. Ber. dtsch. chem. Ges. 86, 1477 (1953).Google Scholar
  155. 155.
    Güntelberg, A. V. and M. Ottesen: Preparation of Crystals containing the Plakalbumin-forming Enzyme from Bacillus subtilis. Nature (London) 170, 802 (1952).CrossRefGoogle Scholar
  156. 156.
    Hanes, C. S., F. J. R. Hird, and F. A. Isherwood: Enzymic Transpeptidation Reactions Involving γ-Glutamyl Peptides and α-Amino-acyl Peptides. Biochemic. J. 51, 25 (1952).Google Scholar
  157. 157.
    Hanes, C. S. and F. A. Isherwood: Separation of the Phosphoric Esters on the Filter Paper Chromatogram. Nature (London) 164, 1107 (1949).CrossRefGoogle Scholar
  158. 158.
    Harfenist, E. J.: The Amino Acid Compositions of Insulins Isolated from Beef, Pork and Sheep Glands. J. Amer. Chem. Soc. 75, 5528 (1953).CrossRefGoogle Scholar
  159. 159.
    Harfenist, E. J. and L. C. Craig: The Molecular Weight of Insulin. J. Amer. Chem. Soc. 74, 3087 (1952).CrossRefGoogle Scholar
  160. 160.
    Harris, G.: Amino Acids and Peptides of Hops and Wort. I. Techniques and New Compounds. J. Inst. Brewing 58, 417 (1952).Google Scholar
  161. 161.
    Harris, G. and J. R. A. Pollock: Amino Acids and Peptides of Hops and Wort. II. Pipecolinic Acid, A New Amino Acid in Barley and Hops. J. Inst. Brewing 59, 28 (1953).Google Scholar
  162. 162.
    Harris, J. I.: private communication.Google Scholar
  163. 163.
    Harris, J.I. and C. H. Li: N- and C-Terminal Amino Acid Sequences of α-Corticotropin. J. Amer. Chem. Soc. 76, 3607 (1954).CrossRefGoogle Scholar
  164. 164.
    Harris, J. I., C. H. Li, P. G. Condliffe, and N. G. Pon: Action of Carboxypeptidase on Hypophyseal Growth Hormone. J. Biol. Chem. 209, 133 (1954).Google Scholar
  165. 165.
    Haugaard, G. and T. D. Kroner: Partition Chromatography of Amino Acids with Applied Voltage. J. Amer. Chem. Soc. 70, 2135 (1948).CrossRefGoogle Scholar
  166. 166.
    Hausmann, W.: Amino Acid Composition of Crystalline Inorganic Pyrophosphatase Isolated from Bakers Yeast. J. Amer. Chem. Soc. 74, 3181 (1952).CrossRefGoogle Scholar
  167. 167.
    Herriot, R. M.: Essential Chemical Structures of Chymotrypsin and Pepsin. In “Mechanism of Enzyme Action”, p. 24 (Ed. W. D. McElroy and B. Glass). Baltimore: John Hopkins Press. 1954.Google Scholar
  168. 168.
    Heyns, K., W. Koch und W. Königsdorf: Über das papierchromatographische Verhalten einer salzsauren Lösung von Glutaminsäure. Naturwiss. 39, 381 (1952).CrossRefGoogle Scholar
  169. 169.
    Heyns, K. und W. Walter: Über Proteine und deren Abbauprodukte. V. Papierchromatographische Trennung der isomeren Leucine. Z. physiol. Chem. (Hoppe-Seyler) 287, 15 (1951).CrossRefGoogle Scholar
  170. 170.
    Heyns, K. und W. Walter: Die Bildung von α-Aminobuttersäure aus Threonin bei der Hydrolyse mit Salzsäure. Naturwiss. 39, 507 (1952).CrossRefGoogle Scholar
  171. 171.
    Hirs, C. H. W.: Structural Studies on Ribonuclease. Federat. Proc. (Amer. Soc. exp. Biol.) 13, 230 (1954).Google Scholar
  172. 172.
    Hirs, C. H. W., S. Moore, and W. H. Stein: Isolation of Amino Acids by Chromatography on Ion Exchange Columns; Use of Volatile Buffers. J. Biol. Chem. 195, 669 (1952).Google Scholar
  173. 173.
    Holley, R. W. and A. D. Holle y: A New Stepwise Degradation of Peptides. J. Amer. Chem. Soc. 74, 5445 (1952).CrossRefGoogle Scholar
  174. 174.
    Horn, M. J., D.B.Jones, and S.J.Ringel: Isolation of Mesolanthionine from Various Alkali-treated Proteins. J. Biol. Chem. 144, 87 (1952).Google Scholar
  175. 175.
    Horner, L., W. Emrich und A. Kirschner: Experimenteller Beitrag zum Mechanismus der Papierchromatographie. Z. Elektrochem. 56, 987 (1952).Google Scholar
  176. 176.
    Ingram, V. M.: The Identification of Peptide End-Groups as Dimethylamino Acids. J. Biol. Chem. 202, 193 (1953).Google Scholar
  177. 177.
    Ingram, V. M.: Phenylthiohydantoins from Serine and Threonine. J. Chem. Soc. (London) 1953, 3717.Google Scholar
  178. 178.
    Isherwood, F. A. and D. H. Cruickshank: A New Method for the Colorimetric Estimation of Amino Acids on Paper Chromatograms. Nature (London) 174, 123 (1954).CrossRefGoogle Scholar
  179. 179.
    Isherwood, F. A. and C. S. Hanes: Separation and Estimation of Organic Acids on Paper Chromatograms. Biochemic. J. 55, 824 (1953).Google Scholar
  180. 180.
    Isherwood, F. A. and M. A. Jermyn: Relationship between the Structure of the Simple Sugars and their Behaviour on the Paper Chromatogram. Biochemic. J. 48, 515 (1951).Google Scholar
  181. 181.
    Iwainsky, H.: Über den Einfluß von Puffergemischen auf die Trennung von DNP-Aminosäuren mit Hilfe der Papierchromatographie. Z. physiol. Chem. (Hoppe-Seyler) 297, 195 (1954).CrossRefGoogle Scholar
  182. 182.
    James, A. T. and R. L. M. Synge: Non-peptide Linkages in Gramicidin. Biochemic. J. 50, 109 (1951).Google Scholar
  183. 183.
    Jansen, E. F., M. D. Fellows-Nutting, R. Jang, and A. K. Balls: Inhibition of the Proteinase and Esterase Activities of Trypsin and Chymotrypsin by Diisopropylfluorophosphate: Crystallisation of Inhibited Chymotrypsin. J. Biol. Chem. 179, 189 (1949).Google Scholar
  184. 184.
    Jatzkewitz, H. und N.-D. Tam: Darstellung und papierchromatographische Trennung einiger Dinitrophenyl-aminoalkohole. Z. physiol. Chem. (Hoppe-Seyler) 296, 188 (1954).CrossRefGoogle Scholar
  185. 185.
    Jensen, H. and E.A. Evans: Studies on Crystalline Insulin. XVIII. The Nature of the Free Amino Groups in Insulin and the Isolation of Phenylalanine and Proline from Crystalline Insulin. J. Biol. Chem. 108, 1 (1935).Google Scholar
  186. 186.
    Jepson, J. B. and I. Smith: “Multiple Dipping” Procedures in Paper Chromatography: A Specific Test for Hydroxyproline. Nature (London) 172, 1100 (1953).CrossRefGoogle Scholar
  187. 187.
    Jermyn, M. A. and F. A. Isherwood: Improved Separation of Sugars on the Paper Partition Chromatogram. Biochemic. J. 44, 402 (1949).Google Scholar
  188. 188.
    Jirgensons, B.: The Influence of Solvent Composition, Temperature and Some Other Factors on the R f Values of Amino Acids in Paper Chromatography. Univ. Texas Publ. No. 5109, 56 (1951).Google Scholar
  189. 189.
    Jollès, P. et C. Fromageot: La protéine lysante II de la rate du Lapin. III. Détermination des aminoacides N- et C-terminaux. Biochim. Biophys. Acta 14, 228 (1954).CrossRefGoogle Scholar
  190. 190.
    Jones, T. S. G.: The Chemical Nature of Aerosporin. III. The Optical Configuration of the Leucine and Threonine Components. Biochemic. J. 42, lix (1948).Google Scholar
  191. 191.
    Jones, T. S. G.: The Determination of Amino-acids by Polarographic Reduction of the Copper Complexes. Biochemic. J. 42, lix (1948).Google Scholar
  192. 192.
    Jones, T. S. G.: The Application of Chromatography to Amino Acids and Peptides. Discuss. Faraday Soc. 7, 285 (1949).CrossRefGoogle Scholar
  193. 192a.
    Tournée de la Chromatographie sur papier. Bull. Soc. chim. France 1952, 815.Google Scholar
  194. 193.
    Jutisz M.: Identification des résidus C-terminaux des peptides et des protéines. Bull. soc. chim. biol. (Paris) 36, 109 (1954).Google Scholar
  195. 194.
    Jutisz, M., M. Privat de Garilhe, M. Suquet et C. Fromageot: Microméthode de séparation des N-dinitrophénylaminoalcools par Chromatographie en “phase inversée”. Bull. soc. chim. biol. (Paris) 36, 117 (1954).Google Scholar
  196. 195.
    Kawerau, E. and T. Wieland: Conservation of Amino-acid Chromatograms. Nature (London) 168, 77 (1951).CrossRefGoogle Scholar
  197. 196.
    Kemble, A. R. and H. T. MacPherson: Indicator Spray for Amino Acids. Nature (Londpn) 170, 664 (1952).CrossRefGoogle Scholar
  198. 197.
    Kemble, A. R. and H. T. MacPherson: Determination of Monoamino Monocarboxylic Acids by Quantitative Paper Chromatography. Biochemic. J. 56, 548 (1954).Google Scholar
  199. 198.
    Kendrew, J. C., R. G. Parrish, J. R. Marrack, and E. S. Orlans: The Species Specificity of Myoglobin. Nature (London) 174, 946 (1954).CrossRefGoogle Scholar
  200. 199.
    Kenner, G. W. and H. G. Khorana: Peptides. II. Selective Degradation by Removal of the Terminal Amino-acid bearing a Free Amino Group. The Use of Alkyl Alkoxydithioformates (Dialkyl Xanthates). J. Chem. Soc. (London) 1952, 2076.Google Scholar
  201. 200.
    Kent, P. W., G. Lawson, and A. Senior: Chromatographic Separation of Amino Sugars and Amino Acids, Using the N-(2:4-dinitrophenyl) Derivatives. Science (Washington) 113, 354 (1951).CrossRefGoogle Scholar
  202. 201.
    Keston, A. S., S. Udenfriend, and M. Levy: Determination of Organic Compounds as Isotopic Derivatives. II. Amino Acids by Paper Chromatographic and Indicator Techniques. J. Amer. Chem. Soc. 72, 748 (1950).CrossRefGoogle Scholar
  203. 202.
    Kickhöfen, B. und O. Westphal: Über eine einfache Kombination von Papierelektrophorese und Papierchromatographie. Z. Naturforsch. 7 B, 650 (1952).Google Scholar
  204. 203.
    Kiessling, H. and J. Porath: A Method of Detection of N-Dimethylamino Acids on Paper. Acta Chem. Scand. 8, 859 (1954).CrossRefGoogle Scholar
  205. 204.
    Kimmel, J. R. and E. L. Smith: Crystalline Papain. I. Preparation, Specificity and Activation. J. Biol. Chem. 207, 515 (1954).Google Scholar
  206. 205.
    Klatzkin, C.: Quantitative Determination of Amino Acids Separated by Paper Partition Chromatography. Nature (London) 169, 422 (1952).CrossRefGoogle Scholar
  207. 206.
    Knight, C. A.: Paper Chromatography of Some Lower Peptides. J. Biol. Chem. 190, 753 (1951).Google Scholar
  208. 207.
    Körös, Z.: Free Amino Groups of Gliadin. Magyar Kém. Folyóirat 56, 131 (1950).Google Scholar
  209. 208.
    Kowkabany, G. N. and H. G. Cassidy: Investigation of Paper Strip Chromatography. Analyt. Chemistry 22, 817 (1950).Google Scholar
  210. 209.
    Kowkabany, G. N. and H. G. Cassidy: Investigation of Paper Chromatography. Factors that may Affect R f Values in Paper Chromatography. Analyt. Chemistry 24, 643 (1952).CrossRefGoogle Scholar
  211. 210.
    Kunitz, M.: Formation of New Crystalline Enzymes from Chymotrypsin. Isolation of Beta and Gamma Chymotrypsin. J. Gen. Physiol. 22, 207 (1938).CrossRefGoogle Scholar
  212. 211.
    Lakshminarayanan, K.: A Simple Technique in Paper Disc Chromatography. Arch. Biochem. Biophys. 49, 396 (1954).CrossRefGoogle Scholar
  213. 212.
    Landmann, W. A., M. P. Drake, and J. Dillaha: Paper Chromatography of the 3-Phenyl-2-thiohydantoin Derivatives of Amino Acids with Application to End Group and Sequence Studies. J. Amer. Chem. Soc. 75, 3638 (1953).CrossRefGoogle Scholar
  214. 213.
    Landmann, W. A., M.P. Drake, and W.F. White: Studies on Pituitary Adrenocorticotropin. VI. An N-Terminal Sequence of Corticotropin-A. J. Amer. Chem. Soc. 75, 4370 (1953).CrossRefGoogle Scholar
  215. 214.
    Landua, A. J. and J. Awapara: Use of a Modified Ninhydrin Reagent in Quantitative Determination of Amino Acids by Paper Chromatography. Science (Washington) 109, 385 (1949).CrossRefGoogle Scholar
  216. 215.
    Landua, A. J., R. Fuerst, and J. Awapara: Paper Chromatography of Amino Acids. Effect of pH of Sample. Analyt. Chemistry 23, 162 (1951).Google Scholar
  217. 216.
    Landucci, J.M., et M. Pimont: Sur le micro-dosage des acides aminés par la méthode de Woiwod. Application aux spots chromatographiques. Bull. Soc. chim. biol. (Paris) 35, 1041 (1953).Google Scholar
  218. 217.
    Lawlsr, H. C., S.P. Taylor, A. M. Swan, and V. du Vigneaud: Presence of Glutamine and Asparagine in Enzymatic Hydrolysates of Oxytocin and Vasopressin. Proc. Soc. exp. Biol. Med. 87, 550 (1954).Google Scholar
  219. 218.
    Lederer, E. and M. Lederer: Chromatography. A Review of Principles and Applications. New York: Elsevier. 1953.Google Scholar
  220. 219.
    Leggett Bailey, J.: Determination of the Amino-acid Sequence in Peptides. Biochemic. J. 52, iv (1952).Google Scholar
  221. 220.
    LeggettBailey, J.: unpublished results. Quoted by A. C. Chibnall (63).Google Scholar
  222. 221.
    Leonis, J.: Structures peptidiques. I. Microdétermination de la séquence des acides aminés dans les petits peptides. Bull. soc. chim. Belgique 61, 524 (1952).CrossRefGoogle Scholar
  223. 222.
    Le Strange, R. J. and R. H. Müller: Circular Filter Paper Chromatography. Analyt. Chemistry 26, 953 (1954).CrossRefGoogle Scholar
  224. 223.
    Levy, A. L.: A Paper Chromatographic Method for the Quantitative Estimation of Amino Acids. Nature (London) 174, 126 (1954).CrossRefGoogle Scholar
  225. 223a.
    Levy, A. L.: Acid Hydrolysis of 3-Phenyl-2-thiohydantoins. Biochim. Biophys. Acta. 15, 589 (1954).CrossRefGoogle Scholar
  226. 224.
    Levy, A. L. and D. Chung: Two-Dimensional Chromatography of Amino Acids on Buffered Papers. Analyt. Chemistry 25, 396 (1953).CrossRefGoogle Scholar
  227. 225.
    Levy, M. and E. Slobodian: Sequences of Amino Acid Residues in Silk Fibroin. J. Biol. Chem. 199, 563 (1952).Google Scholar
  228. 226.
    Li, C. H. and L. Ash: The Nitrogen Terminal End-Groups of Hypophyseal Growth Hormone. J. Biol. Chem. 203, 419 (1953).Google Scholar
  229. 227.
    Linderström-Lang, K.: Proteins and Enzymes. Lane Medical Lectures. Stanford, Calif.: Univ. Press. 1952.Google Scholar
  230. 228.
    Lissitsky, S. et R. Michel: Substances organiques marquées par les radioisotopes. Bull. soc. chim. France 1952, 891.Google Scholar
  231. 229.
    Locker, R. H.: C-Terminal Groups in Myosin, Tropomyosin and Actin. Biochim. Biophys. Acta 14, 533 (1954).CrossRefGoogle Scholar
  232. 230.
    Lorand, L.: Fibrinopeptide. Biochemic. J. 52, 200 (1952).Google Scholar
  233. 231.
    Lorand, L. and W. R. Middlebrook: Studies on Fibrinopeptide. Biochim. Biophys. Acta 9, 581 (1952).CrossRefGoogle Scholar
  234. 232.
    Lorand, L. and W. R. Middlebrook: Species Specificity of Fibrinogen as Revealed by End-Group Studies. Science (Washington) 118, 515 (1953).CrossRefGoogle Scholar
  235. 233.
    Lowther, A. G.: Identification of N-(2,4-Dinitrophenyl) Amino Acids. Nature (London) 167, 767 (1951).CrossRefGoogle Scholar
  236. 234.
    Lumry, R., E.L. Smith, and R. R. Glantz: Kinetics of Carboxypeptidase Action. I. Effect of Various Extrinsic Factors on Kinetic Parameters. J. Amer. Chem. Soc. 73, 4330 (1951).CrossRefGoogle Scholar
  237. 235.
    Marchal, J. G. et T. Mittwer: Modification apportée à la technique de Chromatographie sur papier. Chromatographie en arcs de cercle. C. R. Séances Soc. Biol. 145, 417 (1951).Google Scholar
  238. 236.
    Martin, A. J. P.: The Principles of Chromatography. Endeavour 6, 21 (1947).Google Scholar
  239. 237.
    Martin, A. J. P.: Partition Chromatography. Annu. Rep. Chem. Soc. (London) 45, 267 (1948).Google Scholar
  240. 238.
    Martin, A. J. P.: Some Theoretical Aspects of Partition Chromatography. Biochem. Soc. Symp. 3, 4 (1949).Google Scholar
  241. 239.
    Martin, A. J. P.: Partition Chromatography. Ann. Rev. Biochem. 19, 517 (1950).CrossRefGoogle Scholar
  242. 240.
    Martin, A. J. P. and R. Mittelmann: Quantitative Micro-analysis of Amino Acid Mixtures on Paper Partition Chromatograms. Biochemic. J. 43, 353 (1948).Google Scholar
  243. 241.
    Martin, A. J. P. and R. L. M. Synge: A New Form of Chromatogram Employing Two Liquid Phases. I. A Theory of Chromatography. II. Application to the Micro-Determination of. the Higher Monoamino Acids in Proteins. Biochemic. J. 35, 1358 (1941).Google Scholar
  244. 242.
    McFarren, E. F.: Buffered Filter-Paper Chromatography of the Amino Acids. Analyt. Chemistry 23, 168 (1951).CrossRefGoogle Scholar
  245. 243.
    McFarren, E. F. and J. A. Mills: Quantitative Determination of Amino Acids on Filter Paper Chromatograms by Direct Photometry. Analyt. Chemistry 24, 650 (1952).CrossRefGoogle Scholar
  246. 244.
    Meyer, H. and E. Riklis: Influence of Cations on the Ninhydrin Reaction for the Determination of Amino Acids. Nature (London) 172, 543 (1950).CrossRefGoogle Scholar
  247. 245.
    Miettinen, J. K. and A. I. Virtanen: A New Technique in Paper Chromatography. Acta Chem. Scand. 3, 459 (1949).CrossRefGoogle Scholar
  248. 246.
    Mills, G. L.: Identification of Dinitrophenylamino Acids. Nature (London) 165, 403 (1950).CrossRefGoogle Scholar
  249. 247.
    Mills, G. L.: Observations on the Application of Fluorodinitrobenzene to the Quantitative Analysis of Proteins. Biochemic. J. 50, 707 (1952).Google Scholar
  250. 248.
    Mills, G. L.: Specificity of Bond Fission during the Acid Hydrolysis of Insulin. Biochemic. J. 56, 230 (1954).Google Scholar
  251. 249.
    Mitchell, H. K. and F. A. Haskins: A Filter Paper “Chromatopile”. Science (Washington) 110, 278 (1949).CrossRefGoogle Scholar
  252. 250.
    Monier, R. et C. Fromageot: Quelques peptides résultant de l’hydrolyse partielle du lysozyme. Biochim. Biophys. Acta 5, 224 (1950).CrossRefGoogle Scholar
  253. 251.
    Monier, R. et M. Jutisz: Étude de l’hydrolyse acide du lysozyme. Possibilité d’éviter la destruction du tryptophane au cours de cette hydrolyse. Bull. soc. chim. biol. (Paris) 32, 228 (1950).Google Scholar
  254. 252.
    Monier, R. et M. Jutisz: Contribution à l’étude de la structure de la salmine d’Oncorhynchus. I. Enchaînement des aminoacides au voisinage du résidu N-terminal et étude de quelques peptides résultant de l’hydrolyse acide partielle. Biochim. Biophys. Acta 14, 551 (1954).CrossRefGoogle Scholar
  255. 253.
    Monier, R. et L. Pénasse: La séparation des dinitrophénylaminoacides par Chromatographie sur papier. C. R. hebd. Séances Acad. Sci. 230, 1176 (1950).Google Scholar
  256. 254.
    Moore, A. M. and J. B. Boylen: Simple Method for Making Transfers in Paper Chromatography. Science (Washington) 118, 19 (1953).CrossRefGoogle Scholar
  257. 255.
    Moore, S. and W. H. Stein: Photometrie Ninhydrin Method for Use in the Chromatography of Amino Acids. J. Biol. Chem. 176, 367 (1948).Google Scholar
  258. 256.
    Moore, S. and W. H. Stein: Chromatography of Amino Acids on Sulfonated Polystyrene Resins. J. Biol. Chem. 192, 663 (1951).Google Scholar
  259. 257.
    Moore, S. and W. H. Stein: Chromatography. Annu. Rev. Biochem. 21, 521 (1952).CrossRefGoogle Scholar
  260. 258.
    Mortreuil, M. et Y. Khouvine: Dosage des acides aminés par les complexes colorés dicétohydrindylidène-hydrindamine-sels de cadmium. Bull. soc. chim. biol. (Paris) 36, 425 (1954).Google Scholar
  261. 259.
    Mozingo, R., D. E. Wolf, S. A. Harris, and K. Folkers: Hydrogenblysis of Sulfur Compounds by Raney Nickel Catalyst. J. Amer. Chem. Soc. 65, 1013 (1943).CrossRefGoogle Scholar
  262. 260.
    Mueller, J. M., J. G. Pierce, and V. du Vigneaud: Treatment of Performic Acid-Oxidized Oxytocin with Bromine Water. J. Biol. Chem. 204, 857 (1953).Google Scholar
  263. 261.
    Müller, R. H. and D. L. Clegg: Paper Chromatography. Instruments and Techniques. Physical and Geometric Factors. Kinetic Studies. Analyt. Chemistry 23, 396, 403, 408 (1951).Google Scholar
  264. 262.
    Müting, D.: Über eine qualitative Farbreaktion zur Differenzierung von Aminosäuren auf Filtrierpapier. Naturwiss. 39, 303 (1952).CrossRefGoogle Scholar
  265. 263.
    Naftalin, L. Quantitative Chromatographic Estimation of α-Amino Acids. Nature (London) 161, 763 (1948).CrossRefGoogle Scholar
  266. 264.
    Neurath, H., J. A. Gladner, and E. W. Davie: The Activation of Chymotrypsinogen and Trypsinogen as Viewed by Enzymatic End-Group Analysis. In: “Mechanism of Enzyme Action”, p. 50 (Ed., W. D. McElroy and B. Glass). Baltimore: John Hopkins Press. 1954.Google Scholar
  267. 265.
    Neurath, H. and G. W. Schwert: The Mode of Action of the Crystalline Pancreatic Proteolytic Enzymes. Chem. Rev. 46, 69 (1950).CrossRefGoogle Scholar
  268. 268.
    Neuvième conseil de chimie. Institut international de chimie Solvay. “Les Protéines”. Bruxelles (1953).Google Scholar
  269. 267.
    Newton, G. G. F. and E. P. Abraham: The Nature of Bacitracin A. Biochemic. J. 53, 604 (1953).Google Scholar
  270. 268.
    Ohno, K.: On the Structure of Lysozyme. I. Quantitative Estimation of Carboxyl-Terminal Amino Acid by Improved Hydrazinolysis Method. J. Biochem. (Japan) 40, 621 (1953).Google Scholar
  271. 269.
    Ohno, K.: On the Structure of Lysozyme. II. Characterisation of Aspartyl, Asparaginyl and Glutaminyl Residues in Lysozyme. J. Biochem. (Japan) 41, 345 (1954).Google Scholar
  272. 270.
    Ottesen, M. and A. Wollenberger: Stepwise Degradation of the Peptides Liberated in the Transformation of Ovalbumin to Plakalbumin. C. R. Trav. Lab. Carlsberg, Sér. chim. 28, 463 (1953).Google Scholar
  273. 271.
    Paladini, A. and L. C. Craig: The Chemistry of Tyrocidine. III. The Structure of Tyrocidine A. J. Amer. Chem. Soc. 76, 688 (1954).CrossRefGoogle Scholar
  274. 272.
    Pardee, A. B.: Calculations on Paper Chromatography of Peptides. J. Biol. Chem. 190, 757 (1951).Google Scholar
  275. 273.
    Partition Chromatography. Biochem. Soc. Symp. 3 (1949).Google Scholar
  276. 274.
    Partridge, S. M.: Filter-paper Partition Chromatography of Sugars. I. General Description and Application to the Qualitative Analysis of Sugars in Apple Juice, Egg White and Foetal Blood of Sheep. Biochemic. J. 42, 238 (1948).Google Scholar
  277. 275.
    Partridge, S. M.: Ion-Exchange Resins as Molecular Sieves. Nature (London) 169, 496 (1952).CrossRefGoogle Scholar
  278. 276.
    Partridge, S. M. and R. C. Brimley: Displacement Chromatography on Synthetic Ion-Exchange Resins. VIII. A Systematic Method for the Separation of Amino Acids. Biochemic. J. 51, 628 (1952).Google Scholar
  279. 277.
    Partridge, S. M. and H. F. Davis: Preferential Release of Aspartic Acid during the Hydrolysis of Proteins. Nature (London) 165, 62 (1950).CrossRefGoogle Scholar
  280. 278.
    Patton, A. R. and P. Chism: Quantitative Paper Chromatography of Amino Acids. An Evaluation of Techniques. Analyt. Chemistry 23, 1683 (1951).Google Scholar
  281. 279.
    Pénasse, L., M. Jutisz et C. Fromageot: La caractérisation des groupes carboxyles terminaux dans les protéines. III. La leucine comme acide aminé C-terminal du lysozyme. Bull. soc. chim. biol. (Paris) 35, 376 (1953).Google Scholar
  282. 280.
    Pernis, B. and Ch. Wunderly: Quantitative Determination of Amino Acids on Filter Paper. Staining in Two Stages. Biochim. Biophys. Acta 11, 209 (1953).CrossRefGoogle Scholar
  283. 281.
    Phillips, D. M. P.: Ultraviolet Fluorescence in Paper Chromatography. Nature (London) 161, 53 (1948).CrossRefGoogle Scholar
  284. 282.
    Phillips, D. M. P.: Partition Chromatography of Enzymic Digests of Insulin. Biochem. Biophys. Acta 3, 341 (1949).CrossRefGoogle Scholar
  285. 283.
    Pibz, K. A., E. B. Tooper, and L. S. Fosdick: Desalting of Amino Acid Solutions by Ion Exchange. J. Biol. Chem. 194, 669 (1952).Google Scholar
  286. 284.
    Polson, A.: Quantitative Partition Chromatography and the Composition of E. Coli. Biochim. Biophys. Acta 2, 575 (1948).CrossRefGoogle Scholar
  287. 285.
    Polson, A., V.M. Mosley, and R. W. G. Wyckoff: The Quantitative Chromatography of Silk Hydrolysate. Science (Washington) 105, 603 (1947).CrossRefGoogle Scholar
  288. 286.
    Popenoe, E. A. and V. du Vigneaud: Degradative Studies on Vasopressin and Performic Acid-Oxidised Vasopressin. J. Biol. Chem. 205, 133 (1953).Google Scholar
  289. 287.
    Popenoe, E. A. and V. du Vigneaud: A Partial Sequence of Amino Acids in Performic Acid-Oxidised Vasopressin. J. Biol. Chem. 206, 353 (1954)..Google Scholar
  290. 288.
    Porath, J.: Structure of Bacitracin A. Nature (London) 172, 871 (1953).CrossRefGoogle Scholar
  291. 289.
    Porath, J. and P. Flodin: A New Method for the Detection of Amino-Acids, Peptides, Proteins and Other Buffering Substances on Paper. Nature (London) 168, 202 (1951).CrossRefGoogle Scholar
  292. 290.
    Porter, R. R.: The Unreactive Amino Groups of Proteins. Biochim. Biophys. Acta 2, 105 (1948).CrossRefGoogle Scholar
  293. 291.
    Porter, R. R.: The Reactivity of the Iminazole Ring in Proteins. Biochemic. J. 46, 304 (1950).Google Scholar
  294. 292.
    Porter, R. R.: A Chemical Study of Rabbit Antiovalbumin. Biochemic. J. 46, 473 (1950).Google Scholar
  295. 293.
    Porter, R. R. and F. Sanger: The Free Amino Groups of Haemoglobins. Biochemic. J. 42, 287 (1948).Google Scholar
  296. 294.
    Porter, W. L.: Multiple-Paper Chromatogram. Analyt. Chemistry 23, 412 (1951).CrossRefGoogle Scholar
  297. 295.
    Pratt, J. J. and J. L. Auclair: Sensitivity of the Ninhydrin Reaction in Paper Partition Chromatography. Science (Washington) 108, 213 (1948).CrossRefGoogle Scholar
  298. 296.
    Proom, H. and A. J. Woiwod: The Distribution of Glutamic Acid Decarboxylase in the Family Enterobacteriaceae, Examined by a Simple Chromatographic Method. J. Gen. Microbiol. 5, 681 (1951).Google Scholar
  299. 297.
    Redfield, R. R.: Two-Dimensional Paper Chromatographic Systems with High Resolving Power for Amino Acids. Biochim. Biophys. Acta 10, 344 (1953).CrossRefGoogle Scholar
  300. 298.
    Redfield, R. R. and E. S. Guzman Barron: Quantitative Determination of Amino Acids in Protein Hydrolyzates by Paper Chromatography. Arch. Biochem. Biophys. 35, 443 (1952).CrossRefGoogle Scholar
  301. 299.
    Reed, L. J.: The Occurrence of α-Aminobutyric Acid in Yeast Extract. Its Isolation and Identification. J. Biol. Chem. 183, 451 (1950).Google Scholar
  302. 300.
    Rees, M. W.: The Estimation of Threonine and Serine in Proteins. Biochemic. J. 40, 632 (1946).Google Scholar
  303. 301.
    Reindel, F. und W. Hoppe: Über eine neue Färbemethode zum Nachweis von Aminosäuren, Peptiden und Eiweißkörpern auf Papierchromatogrammen und Elektropherogrammen. Naturwiss. 40, 221 (1953).CrossRefGoogle Scholar
  304. 302.
    Reindel, F. und W. Hoppe: Verbesserung des Trennungseffektes bei der Papierchromatographie durch die Formgebung des Papierstreifens. Naturwiss. 40, 245 (1953).CrossRefGoogle Scholar
  305. 303.
    Reith, W. S. and N. M. Waldron: Studies on the Determination of the Sequence of Amino Acids in Peptides and Proteins. IV. The Synthesis of 3-(4′-Dimethylamino-3′: 5′-dinitrophenyl)-2-thiohydantoin Derivates of Various Amino Acids and their Use for Amino Acid Sequence Determinations. Biochemic. J. 56, 116 (1954).Google Scholar
  306. 304.
    Ressler, C., S. Trippett, and V. du Vigneaud: Free Amino Groups of Performic Acid-Oxidised Oxytocin and of its Cleavage Products Formed by Treatment with Bromine Water. J. Biol. Chem. 204, 861 (1953).Google Scholar
  307. 305.
    Roche, J., M. Jutisz, S. Lissitzky et R. Michel: Sur la Chromatographie quantitative des acides aminés iodés radioactifs de la thyroglobuline marquée. Biochim. Biophys: Acta 7, 257 (1951).CrossRefGoogle Scholar
  308. 306.
    Roche, J., N. V. Thoai et J. L. Hatt: Métabolisme des dérivées guanidylés. III. Analyse chromatographique des dérivées guanidylés. Biochim. Biophys. Acta 14, 71 (1954).CrossRefGoogle Scholar
  309. 307.
    Rockland, L. B., J. L. Blatt, and M. S. Dunn: Small Scale Filter Paper Chromatography. Filter Papers and Solvents. Analyt. Chemistry 23, 1142 (1951).CrossRefGoogle Scholar
  310. 308.
    Rockland, L. B. and M. S. Dunn: Quantitative Determination of Amino Acids on Filter Paper Chromatograms by Direct Photometry. J. Amer. Chem. Soc. 71, 4121 (1949).CrossRefGoogle Scholar
  311. 309.
    Roland, J. F., Jr. and A. M. Gross: Quantitative Determination of Amino Acids Using Monodimensional Paper Chromatography. Analyt. Chemistry 26, 502 (1954).CrossRefGoogle Scholar
  312. 310.
    Rovery, M. et P. Desnuelle: Application comparée de la technique de Sanger et de la technique d’Edman-Fraenkel-Conrat à la détermination des résidus N-terminaux des protéines. Bull. soc. chim. biol. (Paris) 36, 95 (1954).Google Scholar
  313. 311.
    Rovery, M. et C. Fabre: Chromatographie sur papier en phase aqueuse pour l’étude des dinitrophénylaminoacides et peptides. Bull. soc. chim. biol. (Paris) 35, 541 (1953).Google Scholar
  314. 312.
    Rovery, M., C. Fabre et P. Desnuelle: Extrémités N-terminales de la ß- et de la γ-chymotrypsines de Boeuf. Biochim. Biophys. Acta 10, 481 (1953).CrossRefGoogle Scholar
  315. 313.
    Rovery, M., C. Fabre et P. Desnuelle: Étude de l’activation du chymotrypsinogène et du trypsinogène de Boeuf par détermination des résidus N-terminaux dans les protéines et les enzymes correspondants. Biochim. Biophys. Acta 12, 547 (1953).CrossRefGoogle Scholar
  316. 314.
    Rovery, M., M. Poilroux et P. Desnuelle: Cristallisation d’une, nouvelle chymotrypsine formée par activation rapide du chymotrypsinogène de Boeuf. Biochim. Biophys. Acta 14, 145 (1954).CrossRefGoogle Scholar
  317. 315.
    Rutter, L.: Some Applications of a Modified Technique in Paper Chromatography. Analyst 75, 37 (1950).CrossRefGoogle Scholar
  318. 316.
    Rydon, H. N., and P. W. G. Smith: A New Method for the Detection of Peptides and Similar Compounds on Paper Chromatograms. Nature (London) 169, 922 (1952).CrossRefGoogle Scholar
  319. 317.
    Ryle, A. P., and F. Sanger: Disulphide Interchange Reactions. Biochemic. J. 58, v (1954).Google Scholar
  320. 318.
    Saifer, A. and I. Oreskes: Circular Paper Chromatography. I. Studies of Physical Factors that May Influence R f Values. Analyt. Chemistry 25, 1539 (1953).CrossRefGoogle Scholar
  321. 319.
    Saifer, A. and I. Oreskes: Circular Paper Chromatography. II. Isatin as a Color Reagent for Amino Acids. Science (Washington) 119, 124 (1954).CrossRefGoogle Scholar
  322. 320.
    Salander, R. C., M. Piano, and A. R. Patton: Accuracy of Quantitative Paper Chromatography in Amino Acid Analysis. Addendum. Analyt. Chemistry 25, 1252 (1953).CrossRefGoogle Scholar
  323. 321.
    Sanger, F.: The Free Amino Groups of Insulin. Biochemic. J. 39, 507 (1945).Google Scholar
  324. 322.
    Sanger, F.: Fractionation of Oxidised Insulin. Biochemic. J. 44, 126 (1949).Google Scholar
  325. 323.
    Sanger, F.: The Terminal Peptides of Insulin. Biochemic. J. 45, 563 (1949).Google Scholar
  326. 324.
    Sanger, F.: Application of Partition Chromatography to the Study of Protein Structure. Biochem. Soc. Symp. 3, 21 (1949).Google Scholar
  327. 325.
    Sanger, F.: The Arrangement of Amino Acids in Proteins. Adv. Protein Chem. 7, 1 (1952).CrossRefGoogle Scholar
  328. 326.
    Sanger, F.: A Disulphide Interchange Reaction. Nature (London) 171, 1025 (1953).CrossRefGoogle Scholar
  329. 327.
    Sanger, F., L. F. Smith, and R. Kitai: The Disulphide Bridges of Insulin. Biochemic. J. 58, vi (1954).Google Scholar
  330. 328.
    Sanger, F. and E. O. P. Thompson: The Amino-acid Sequence in the Glycyl Chain of Insulin. I. The Identification of Lower Peptides from Partial Hydrolysates. Biochemic. J. 53, 353 (1953).Google Scholar
  331. 329.
    Sanger, F. and E. O. P. Thompson: The Amino-acid Sequence in the Glycyl Chain of Insulin. II. The Investigation of Peptides from Enzymic Hydrolysates. Biochemic. J. 53, 366 (1953).Google Scholar
  332. 330.
    Sanger F. and E. O. P. Thompson: The Inversion of a Dipeptide Sequence during Hydrolysis in Dilute Acid. Biochim. Biophys. Acta 9, 225 (1952).CrossRefGoogle Scholar
  333. 331.
    Sanger F. and E. O. P. Thompson: unpublished results.Google Scholar
  334. 332.
    Sanger, F., E. O. P. Thompson, and R. Kitai: The Amide Groups of Insulin. Biochemic. J. 59, 509 (1955).Google Scholar
  335. 333.
    Sanger, F., E. O. P. Thompson, and H. Tuppy: Amino Acid Sequences in Insulin. Symp. Hormones Protéiques et Derivées des Protéines, p. 26. 11e Congrès Internat. Biochim., Paris (1952).Google Scholar
  336. 334.
    Sanger, F. and H. Tuppy: The Amino-acid Sequence in the Phenylalanyl Chain of Insulin. I. The Identification of Lower Peptides from Partial Hydrolysates. Biochemic. J. 49, 463 (1951).Google Scholar
  337. 335.
    Sanger, F. and H. Tuppy: The Amino-acid Sequence in the Phenylalanyl Chain of Insulin. II. The Investigation of Peptides from Enzymic Hydrolysates. Biochemic. J. 59, 481 (1951).Google Scholar
  338. 336.
    Schaffer, N. K., S. Harshman, and R. R. Engle: Phosphoserylglycine from Diisopropylphosphoryl Chymotrypsin and Inversion of its Peptide Sequenc by Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 13, 289 (1954).Google Scholar
  339. 337.
    Schlögl, K. und H. Fabitschowitz: Konstitutionsermittlung von Peptiden. VI. Lysyl-peptide. 11. Mitt, über Peptide. Monatsh. Chem. 84, 937 (1953).CrossRefGoogle Scholar
  340. 338.
    Schlögl, K. und E. Wawersich: Eine Methode zur gleichzeitigen Bestimmung der Amino- und Carboxyl-endständigen Aminosäure in Peptiden. Naturwiss. 41, 38 (1954).CrossRefGoogle Scholar
  341. 339.
    Schmid, K.: The N-Terminal Residue in Acid Glycoprotein. Biochim. Biophys. Acta 14, 437 (1954).CrossRefGoogle Scholar
  342. 340.
    Schramm, G. und G. Braunitzer: Prolin als Endgruppe des Tabakmosaikvirus. Z. Naturforsch. 8 B, 61 (1953).Google Scholar
  343. 341.
    Schramm, G. und J. W. Schneider: Zum Abbau von Peptiden mit Phenylisothioeyanat. Z. Naturforsch. 9 B, 209 (1954).Google Scholar
  344. 342.
    Schroeder, W. A.: Some Experiments on the Chromatographie Separation and Identification of Peptides in Partial Hydrolysates of Gelatin. Ciba Found. Symp. “The Chemical Structure of Proteins”, p. 184 (1953).Google Scholar
  345. 343.
    Schroeder, W. A.: Column Chromatography in the Study of the Structure of Peptides and Proteins. Fortschr. Chem. organ. Naturstoffe 11, 240 (1954).Google Scholar
  346. 344.
    Schroeder, W. A., L. R. Honnen, and F. C. Green: Chromatographic Separation and Identification of Some Peptides in Partial Hydrolysates of Gelatin. Proc. Nat. Acad. Sci. (U. S. A.) 39, 23 (1953).CrossRefGoogle Scholar
  347. 345.
    Schroeder, W. A., L. M. Kay, J. LeGette, L. R. Honnen, and F. C. Green: The Constitution of Gelatin. Separation and Estimation of Peptides in Partial Hydrolysates. J. Amer. Chem. Soc. 76, 3556 (1954).CrossRefGoogle Scholar
  348. 346.
    Schroeder, W. A. and J. LeGette: A Study of the Quantitative Dinitrophenylation of Amino Acids and Peptides. J. Amer. Chem. Soc, 75, 4612 (1953).CrossRefGoogle Scholar
  349. 347.
    Sherry, S. and W. Troll: The Action of Thrombin on Synthetic Substrates. J. Biol. Chem. 208, 95 (1954).Google Scholar
  350. 348.
    Sibatani, A. and M. Fukuda: Importance of Controlling Water Content of the Solvents for Paper Chromatography. J. Biochem. (Japan) 38, 181 (1951).Google Scholar
  351. 349.
    Simmonds, D. H.: Improved Electrolytic Desalter. Analyt. Chemistry 26, 1253 (1954).CrossRefGoogle Scholar
  352. 350.
    Sjöquist, J.: Paper Strip Identification of Phenylthiohydantoins. Acta Chem. Scand. 7, 447 (1953).CrossRefGoogle Scholar
  353. 351.
    Slotta, K. H. and J. Primosigh: A New Method of Quantitative Paper Chromatography (of Protein Hydrolysates). Mem. Inst. Butantan 24, 85 (1952).Google Scholar
  354. 352.
    Smith, E. L.: The Specificity of Certain Peptidases. Adv. Enzymology 12, 191 (1951).Google Scholar
  355. 353.
    Smith, E. L.: Proteolytic Enzymes. In: The Enzymes, Vol. 1, Part. 2, p. 802. New York: Academic Press. 1951.Google Scholar
  356. 354.
    Smith, E. L.: Pitfalls in Partition Chromatography. Nature (London) 169, 60 (1952).CrossRefGoogle Scholar
  357. 355.
    Smith, E. L., J. R. Kimmel, and D. M. Brown: Crystalline Papain. II. Physical Studies; the Mercury Complex. J. Biol. Chem. 207, 533 (1954).Google Scholar
  358. 356.
    Smith, E. L., J. R. Kimmel, D. M. Brown, and E. O. P. Thompson: Isolation and Properties of a Crystalline Mercury Derivative of a Lysozyme from Papaya Latex. J. Biol. Chem. (in press).Google Scholar
  359. 357.
    Smith, E. L. and J. E. Page: The Acid Binding Properties of Long-Chain Aliphatic Amines. J. Soc. Chem. Ind. 67, 48 (1948).CrossRefGoogle Scholar
  360. 358.
    Smith, E. L. and A. Stockell: Amino Acid Composition of Crystalline Carboxypeptidase. J. Biol. Chem. 207, 501 (1954).Google Scholar
  361. 359.
    Smith, E. L., A. Stockell, and J. R. Kimmel: Crystalline Papain. III. Amino Acid Composition. J. Biol. Chem. 207, 551 (1954).Google Scholar
  362. 360.
    Smith, I.: Colour Reactions on Paper Chromatograms by a Dipping Technique. Nature (London) 171, 43 (1953).CrossRefGoogle Scholar
  363. 361.
    Sorm, F., J. Körbl, and L. Matousek: Water-soluble Dinitrophenyl Derivatives of Proteins. Collect. Czechoslov. Chem. Communs. 15, 295 (1950).Google Scholar
  364. 362.
    Stein, W. H.: A Chromatographic Investigation of the Atnino Acid Constituents of Normal Urine. J. Biol. Chem. 201, 45 (1953).Google Scholar
  365. 363.
    Stein, W. H. and S. Moore: Chromatographic Determination of the Amino Acid Composition of Proteins. Cold Spring Harbor Sympos. Quant. Biol. 14, 179 (1949).CrossRefGoogle Scholar
  366. 364.
    Stein, W. H. and S. Moore: Electrolytic Desalting of Amino Acids. Conversion of Arginine to Ornithine. J. Biol. Chem. 190, 103 (1951).Google Scholar
  367. 365.
    Steinberg, D.: The Combined Action of Carboxypeptidase and B. subtilis Enzyme on Ovalbumin. J. Amer. Chem. Soc. 75, 4875 (1953).CrossRefGoogle Scholar
  368. 366.
    Swan, J. M.: Thiohydantoins. I. The Preparation of Some 2-Thiohydantoins from Amino Acids and Acylamino Acids. Austral. J. sci. Research A 5, 711 (1952).Google Scholar
  369. 367.
    Synge, R. L. M.: Analysis of a Partial Hydrolysate of Gramicidin by Partition Chromatography with Starch. Biochemic. J. 38, 285 (1944).Google Scholar
  370. 368.
    Synge, R. L. M.: A Further Study of Hydrolysates of Gramicidin. Biochemic. J. 44, 542 (1949).Google Scholar
  371. 369.
    Synge, R. L. M.: Methods for Isolating ω-Amino-acids: γ-Aminobutyric Acid from Rye Grass. Biochemic. J. 48, 429 (1951).Google Scholar
  372. 370.
    Synge, R. L. M.: Electrophoresis, Chromatography and Related Physical Methods in Application to Future Requirements of Protein Chemistry. 9e conseil de chimie. Institut Internat. Chim. Solvay. “Les protéines”, p. 153 (1953).Google Scholar
  373. 370a.
    Synge, R. L. M. and A. Tiselius: Some Adsorption Experiments with Amino Acids and Peptides, Especially Compounds of Tryptophan. Acta Chem. Scand. 3, 231 (1949).CrossRefGoogle Scholar
  374. 371.
    Tabone, J., D. Robert, S. Thomassey et N. Mamounas: Microcaractérisation de la cynurénine en présence de tryptophane. Application à l’étude des hydrolysats alcalins de tryptophane. Bull. soc. chim. biol. (Paris) 32, 529 (1950).Google Scholar
  375. 372.
    Thompson, A. R.: Destruction of DNP-Amino Acids by Tryptophane. Nature (London) 168, 390 (1951).CrossRefGoogle Scholar
  376. 373.
    Thompson, A. R.: The C-Terminal Residue of Lysozyme. Nature (London) 169, 495 (1952).CrossRefGoogle Scholar
  377. 374.
    Thompson, A. R.: Amino Acid Sequences in Lysozyme. Biochim. Biophys. Acta 14. 581 (1954).CrossRefGoogle Scholar
  378. 375.
    Thompson, A. R.: Destruction of Phenylalanine and Tyrosine During the Anodic Oxidation of C-Termihal Residues in Acyl Peptides. Biochim. Biophys. Acta 15, 299 (1954).CrossRefGoogle Scholar
  379. 376.
    Thompson, A. R.: Amino Acid Sequence in Lysozyme. I. Displacement Chromatography of Peptides on Ion Exchange Resins. Biochemic. J. (in press).Google Scholar
  380. 377.
    Thompson, A. R.: Amino Acid Sequence in Lysozyme. II. Elution Chromatography of Peptides on Ion Exchange Resins. Biochemic. J. (in press).Google Scholar
  381. 378.
    Thompson, A. R.: unpublished results.Google Scholar
  382. 379.
    Thompson, E. O. P.: The N-Terminal Sequence of Carboxypeptidase. Biochim. Biophys. Acta 10, 633 (1953).CrossRefGoogle Scholar
  383. 380.
    Thompson, E. O. P.: Crystalline Papain. IV. Free Amino Groups and N-Terminal Sequence. J. Biol. Chem. 207, 563 (1954).Google Scholar
  384. 381.
    Thompson, E. O. P.: The N-Terminal Sequence of Serum Albumins; Observations on the Thiohydantoin Method. J. Biol. Chem. 208, 565 (1954).Google Scholar
  385. 382.
    Thompson, E. O. P.: Modification of Tyrosine during Performic Acid Oxidation. Biochim. Biophys. Acta 15, 440 (1954).CrossRefGoogle Scholar
  386. 383.
    Thompson, E. O. P.: unpublished results.Google Scholar
  387. 384.
    Thompson, J. F. and F. C. Steward: Investigation on Nitrogen Compounds and Nitrogen Metabolites in Plants. II. Variables in Two-dimensional Paper Chromatography of Nitrogen Compounds. Plant Physiol. 26, 421 (1951).CrossRefGoogle Scholar
  388. 385.
    Thompson, J. F., R. M. Zacharius, and F. C. Steward: Investigations of Nitrogen Compounds and Nitrogen Metabolism in Plants. I. The Reaction of Nitrogen Compounds with Ninhydrin on Paper and a Quantitative Procedure. Plant Physiol. 26, 375 (1951).CrossRefGoogle Scholar
  389. 386.
    Toennies, G. and J. J. Kolb: Techniques and Reagents for Paper Chromatography. Analyt. Chemistry 23, 823 (1951).CrossRefGoogle Scholar
  390. 387.
    Tomarelli, R. M. and K. Florey: Use of Papergrams in the Study of the Urinary Excretion of Radioactive Sulfur Compounds. Science (Washington) 107, 630 (1948).CrossRefGoogle Scholar
  391. 388.
    Tristram, G. R.: The Amino Acid Composition of Proteins. In: The Proteins, Vol. 1 A, p. 181 (Ed. H. Neurath and K. Bailey). New York: Academic Press. 1953.Google Scholar
  392. 389.
    Troll, W. and R. K. Cannan: A Modified Photometric Ninhydrin Method for the Analysis of Amino and Imino Acids. J. Biol. Chem. 200, 803 (1953).Google Scholar
  393. 390.
    Tuppy, H.: Zum Nachweis und zur papierchromatographischen Trennung von Guanidinoverbindungen. Monatsh. Chem. 84, 342 (1953).CrossRefGoogle Scholar
  394. 391.
    Tuppy, H.: Über die enzymatische Spezifität der bakteriellen Proteinase, die Ovalbumin in Plakalbumin verwandelt. Monatsh. Chem. 84, 996 (1953).CrossRefGoogle Scholar
  395. 392.
    Tuppy, H. and H. Michl: Über die chemische Struktur des Oxytocins. Monatsh. Chem. 84, 1011 (1953).CrossRefGoogle Scholar
  396. 393.
    Turba, F.: Degradation of Peptides from the Amino End. Ciba Found. Symp. “The Chemical Structure of Proteins”, p. 142 (1953).Google Scholar
  397. 394.
    Turner, R. A., J. G. Pierce, and V. du Vigneaud: The Desulphurisation of Oxytocin. J. Biol. Chem. 193, 359 (1951).Google Scholar
  398. 395.
    Turner, R. A. and G. Schmerzler: C-Terminal Residues in Peptides and Proteins Through Formation of Thiohydantoins. Biochim. Biophys. Acta 13, 553 (1954)CrossRefGoogle Scholar
  399. 396.
    Turner, R. A. and G. Schmerzler: A New Method for Identifying C-Terminal Residues in Peptides. J. Amer. Chem. Soc. 76, 949 (1954).CrossRefGoogle Scholar
  400. 397.
    Udenfriend, S.: Identification of γ-Aminobutyric Acid in Brain by the Isotope Derivative Method. J. Biol. Chem. 187, 65 (1950).Google Scholar
  401. 398.
    Udenfriend, S. and S. F. Velick: The Isotope Derivative Method of Protein Amino End-Group Analysis. J. Biol. Chem. 190, 733 (1951).Google Scholar
  402. 399.
    Urbach, K. F. Deposition and Simultaneous Concentration of Dilute Solutions in Paper Partition Chromatography. Science (Washington) 109, 259 (1949).CrossRefGoogle Scholar
  403. 400.
    van Halteren, M. B.: Artefacts in the Chromatography of Mixtures of Amino Acids containing Cysteine. Nature (London) 168, 1090 (1951).CrossRefGoogle Scholar
  404. 401.
    van Vunakis, H. and R. M. Herriot: unpublished results. Quoted by R. M. Herriot (167).Google Scholar
  405. 402.
    Velick, S. F. and S. Udenfriend: Isotope Derivative Analysis for Proline, Valine, Methionine and Phenylalanine. J. Biol. Chem. 190, 721 (1951).Google Scholar
  406. 403.
    von Euler, U. S. and R. Eliasson: Application of Material in Filter Paper Chromatography. Nature (London) 170, 664 (1952).CrossRefGoogle Scholar
  407. 404.
    Waldschmidt-Leitz, E. und K. Gauss: Verfahren zur Bestimmung der Carboxyl-endständigen Aminosäuren in Peptiden. Chem. Ber. 85, 352 (1952).CrossRefGoogle Scholar
  408. 405.
    Wäley, S. G. and J. Watson: The Stepwise Degradation of Peptides. J. Chem. Soc. (London) 1951, 2394.Google Scholar
  409. 406.
    Warner, R. C.: The Kinetics of the Hydrolysis of Urea and of Arginine. J. Biol. Chem. 142, 705 (1942).Google Scholar
  410. 407.
    Weibull, C.: The Free Amino Groups of the Proteus Flagella Protein. Quantitative Determination of Dinitrophenyl Amino Acids using Paper Chromatography. Acta Chem. Scand. 7, 335 (1953).CrossRefGoogle Scholar
  411. 408.
    Wellington, E. F.: An Ultramicro Method for Quantitative Determination of Amino Acids. Canad. J. Chem. 30, 581 (1952).CrossRefGoogle Scholar
  412. 409.
    Wellington, E. F.: The Effect of Relative Humidity on the Reaction of Ninhydrin with Amino Acids on Paper Chromatograms. Canad. J. Chem. 31, 484 (1953).CrossRefGoogle Scholar
  413. 410.
    Wellington, E. F.: The Amino Acid Composition of Some Insect Viruses and their Characteristic Inclusion-body Proteins. Biochemic. J. 57, 334 (1954).Google Scholar
  414. 411.
    Wessely, F., K. Schlögl, and G. Korger: A New Method for the Degradation of Peptides. Nature (London) 169, 708 (1952).CrossRefGoogle Scholar
  415. 412.
    Wessely, F., K. Schlögl und E. Wawersich: Konstitutionsermittlung von Peptiden. II. Die Bestimmung der Aminosäure, der ihr benachbarten und der Aminosäure in Tri- und Tetrapeptiden. 4. Mitt. über Peptide. Monatsh. Chem. 83, 1426 (1952).CrossRefGoogle Scholar
  416. 413.
    White, W. F.: Studies on Adrenocorticotropin. V. The Isolation of Corticotropin-A. J. Amer. Chem. Soc. 75, 503 (1953).CrossRefGoogle Scholar
  417. 414.
    White, W. F.: Studies on Pituitary Adrenocorticotropin. VIL A C-Ter minai Sequence of Corticotropin-A. J. Amer. Chem. Soc. 75, 4877 (1953).CrossRefGoogle Scholar
  418. 415.
    White, W. F.: Studies on Pituitary Adrenocorticotropin. IX. Further Sequences near the C-Terminus. J. Amer. Chem. Soc. 76, 4194 (1954).CrossRefGoogle Scholar
  419. 416.
    White, W. F. and W. A. Landmann: Studies on Pituitary Adrenocorticotropin. VIII. Synthetic Confirmation of Three Dipeptides from Corticotropin-A. J. Amer. Chem. Soc. 76, 4193 (1954).CrossRefGoogle Scholar
  420. 417.
    Wieland, T. und L. Wirth: Papierchromatographische Analyse der durch Erhitzen mit Alkali gebildeten Zersetzungsprodukte von Serin, Threonin und Cystein. Chem. Ber. 82, 468 (1949).CrossRefGoogle Scholar
  421. 418.
    Wiggins, L. F. and J. H. Williams: Use of n-Butanol-Formic Acid-Water Mixture in the Paper Chromatography of Amino Acids and Sugars. Nature (London) 170, 279 (1952).CrossRefGoogle Scholar
  422. 419.
    Williams, R. J. and H. Kirby: Paper Chromatography using Capillary Ascent. Science (Washinhton) 107, 481 (1948).CrossRefGoogle Scholar
  423. 420.
    Williamson, M. B. and J. M. Passmann: The Terminal Amino Group of Pepsin. J. Biol. Chem. 199, 121 (1952).Google Scholar
  424. 421.
    Williamson, M. B. and J. M. Passmann: The Terminal Free Carboxyl Groups of Pepsin. Biochim. Biophys. Acta 15, 246 (1954).CrossRefGoogle Scholar
  425. 422.
    Winegard, H. M., G. Toennies, and R. J. Block: Detection of Sulphur-containing Amino Acids on Paper Chromatograms. Science (Washington) 108, 506 (1948).CrossRefGoogle Scholar
  426. 423.
    Woiwod, A. J.: Micro Estimation of Ammo-Nitrogen and its Application to Paper Partition Chromatography. Nature (London) 161, 169 (1948).CrossRefGoogle Scholar
  427. 424.
    Woiwod A Technique for Examining Large Numbers of Bacterial Culture Filtrates by Partition Chromatography. J. Gen. Microbiol. 3, 312 (1949).Google Scholar
  428. 425.
    Woiwod A Method for the Estimation of Micro Amounts of Amino Nitrogen and its Application to Paper Partition Chromatography. Biochem. J. 45, 412 (1949).Google Scholar
  429. 426.
    Work, E.: Chromatographic Investigations of Amino Acids from Microorganisms. I. The Amino-acids of Corynebacterium Diphtheriae. Biochim. Biophys. Acta 3, 400 (1949).CrossRefGoogle Scholar
  430. 427.
    Wynn, V.: A Peptide-like Contaminant of Filter Paper. Nature (London) 164, 445 (1949).CrossRefGoogle Scholar
  431. 428.
    Zimmermann, G. und K. Nehring: Über Ring-Papierchromatographie nach der Tropfmethode. Angew. Chem. 63, 556 (1951).CrossRefGoogle Scholar

Copyright information

© Wien Springer Verlag 1955

Authors and Affiliations

  • E. O. P. Thompson
    • 1
  • A. R. Thompson
    • 1
  1. 1.MelbourneAustralia

Personalised recommendations